www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitProdukt zweier unstetiger Fktn
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Produkt zweier unstetiger Fktn
Produkt zweier unstetiger Fktn < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt zweier unstetiger Fktn: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:22 Mi 11.01.2012
Autor: fagottator

Aufgabe
Beweisen oder widerlegen (Gegenbeispiel) Sie folgende Aussagen:

b) Jede stetige, beschränkte Funktion auf [mm] $(-\infty, \infty)$ [/mm] nimmt ihr Maximum/Minimum an.

Hallo zusammen,

ich bräuchte mal Hilfe bei dieser Aufgabe.

Sehe ich das richtig, dass ein Gegenbeispiel hierfür ein konstante Funktion wär? Diese ist stetig und beschränkt, nimmt auf [mm] $(-\infty,\infty)$ [/mm] jedoch weder ein Maximum noch ein Minimum an, da diese nicht existieren. Für ein Maximum x müssten doch Werte kleiner als x kleiner und Werte größer x größer als der Wert für x sein, oder?

LG fagottator


        
Bezug
Produkt zweier unstetiger Fktn: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Mi 11.01.2012
Autor: reverend

Hallo fagottator,

> Beweisen oder widerlegen (Gegenbeispiel) Sie folgende
> Aussagen:
>
> b) Jede stetige, beschränkte Funktion auf [mm](-\infty, \infty)[/mm]
> nimmt ihr Maximum/Minimum an.
>  Hallo zusammen,
>  
> ich bräuchte mal Hilfe bei dieser Aufgabe.
>  
> Sehe ich das richtig, dass ein Gegenbeispiel hierfür ein
> konstante Funktion wär? Diese ist stetig und beschränkt,
> nimmt auf [mm](-\infty,\infty)[/mm] jedoch weder ein Maximum noch
> ein Minimum an, da diese nicht existieren. Für ein Maximum
> x müssten doch Werte kleiner als x kleiner und Werte
> größer x größer als der Wert für x sein, oder?

Nein. Lies mal die übliche []Definition.
Eine konstante Funktion hat an jeder Stelle ein lokales und globales Minimum bzw. Maximum.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]