www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieProduktmaß Kreisfläche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - Produktmaß Kreisfläche
Produktmaß Kreisfläche < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktmaß Kreisfläche: auf dem richtigem weg?
Status: (Frage) beantwortet Status 
Datum: 22:23 Fr 17.12.2010
Autor: carlosfritz

Aufgabe
Berechne [mm] \lambda_{2} [/mm] ({(x,y) [mm] \in \IR^{2} [/mm] : [mm] x^{2}+y^{2} \le r^{2} [/mm] })

Hallo, hierbei handelt es sich ja um den Kreis um (0,0) mit dem Radius r.
Es müsste ja also [mm] \pi r^{2} [/mm] herauskommen.
Als Hinweis haben wir gegeben, [mm] \lambda_{2} [/mm] als Produktmaß zu betrachten.
Den Nullmengenkram lasse ich erstmal weg, nur um zu verstehen wie das läuft.

Mit A(x) bezeichne ich die x-Schnitte der Menge A

Das Produktmaß ist definiert als [mm] \mu(A)=\integral s_{1} d\mu_1 [/mm] mit [mm] s_{1}(x)=\mu_{2}(A(x)) [/mm] für alle [mm] x\in \Omega_{1}. [/mm] (Hier ist A [mm] \in \mathcal{A} [/mm] = [mm] \mathcal{A}_{1}\otimes\mathcal{A}_{2} [/mm] und [mm] \mu_{1 bzw 2} [/mm] ist Maß auf [mm] \mathcal{A}_{1 bzw 2}) [/mm]


Ich setze mal A:= [mm] \{(x,y) \in \IR^{2} : x^{2}+y^{2} \le r^{2} \} [/mm]


Dann gilt A(x) = [mm] \{y\in \IR : (x,y) \in A \} [/mm]

und damit [mm] \lambda_{1} [/mm] (A(x)) = [mm] \wurzel(r^{2}-x^{2}) [/mm] + [mm] \wurzel(r^{2}-x^{2}) [/mm] für alle x [mm] \in [/mm] [-r,r]


Jetzt definiere ich eine Funktion s: [mm] \IR \to \IR [/mm] ; [mm] x\mapsto \begin{cases} \lambda_{1} (A(x)) , & \mbox{für } x \in [-r,r] \\ 0, & \mbox{sonst}\end{cases} [/mm]


Nach unserer Definition muss ich nun "nur" noch [mm] \integral [/mm] s [mm] d\lambda_{1} [/mm] berechnen.

Die Funktion eingeschränkt auf [-r,r] ist ja Riemann-Integrierbar.
Wolfram Alpha gibt mir auch [mm] \pi r^{2} [/mm] heraus.

Aber die Stammfunktion zu finden ist doch recht aufwendig.
Gibt es noch einen einfacheren Weg?

        
Bezug
Produktmaß Kreisfläche: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Sa 18.12.2010
Autor: fred97


> Berechne [mm]\lambda_{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

({(x,y) [mm]\in \IR^{2}[/mm] : [mm]x^{2}+y^{2} \le r^{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> })
>  Hallo, hierbei handelt es sich ja um den Kreis um (0,0)
> mit dem Radius r.
> Es müsste ja also [mm]\pi r^{2}[/mm] herauskommen.
>  Als Hinweis haben wir gegeben, [mm]\lambda_{2}[/mm] als Produktmaß
> zu betrachten.
>  Den Nullmengenkram lasse ich erstmal weg, nur um zu
> verstehen wie das läuft.
>  
> Mit A(x) bezeichne ich die x-Schnitte der Menge A
>
> Das Produktmaß ist definiert als [mm]\mu(A)=\integral s_{1} d\mu_1[/mm]
> mit [mm]s_{1}(x)=\mu_{2}(A(x))[/mm] für alle [mm]x\in \Omega_{1}.[/mm]


Da sollte [mm] \mu_{1}(A(x)) [/mm]  stehen


> (Hier
> ist A [mm]\in \mathcal{A}[/mm] =
> [mm]\mathcal{A}_{1}\otimes\mathcal{A}_{2}[/mm] und [mm]\mu_{1 bzw 2}[/mm] ist
> Maß auf [mm]\mathcal{A}_{1 bzw 2})[/mm]
>  
>
> Ich setze mal A:= [mm]\{(x,y) \in \IR^{2} : x^{2}+y^{2} \le r^{2} \}[/mm]
>  
>
> Dann gilt A(x) = [mm]\{y\in \IR : (x,y) \in A \}[/mm]
>  
> und damit [mm]\lambda_{1}[/mm] (A(x)) = [mm]\wurzel(r^{2}-x^{2})[/mm] +
> [mm]\wurzel(r^{2}-x^{2})[/mm] für alle x [mm]\in[/mm] [-r,r]

Richtig.

>  
>
> Jetzt definiere ich eine Funktion s: [mm]\IR \to \IR[/mm] ; [mm]x\mapsto \begin{cases} \lambda_{1} (A(x)) , & \mbox{für } x \in [-r,r] \\ 0, & \mbox{sonst}\end{cases}[/mm]
>  
>
> Nach unserer Definition muss ich nun "nur" noch [mm]\integral[/mm] s
> [mm]d\lambda_{1}[/mm] berechnen.
>  
> Die Funktion eingeschränkt auf [-r,r] ist ja
> Riemann-Integrierbar.
>  Wolfram Alpha gibt mir auch [mm]\pi r^{2}[/mm] heraus.
>  
> Aber die Stammfunktion zu finden ist doch recht aufwendig.


Das stimmt aber nicht ! Das ist machbar.

FRED

>  Gibt es noch einen einfacheren Weg?


Bezug
                
Bezug
Produktmaß Kreisfläche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:52 Sa 18.12.2010
Autor: carlosfritz

Alles klar, danke.


Aber zur Definition des Produktmaßes. Ich habe nochmal im Script geschaut, da habe ich das genauso geschrieben. Allerdings wird es bei []Wiki zum Beispiel anders gemacht (so wie du sagtest). Wobei man hier das Maß über eine Teilmenge nehmen soll, auf der das Maß gar nicht definiert wurde oder? ( [mm] \mu_{1}(\IX_{2}) [/mm] )

Aber []hier (bei 10.1.10) wird es wiederum so gemacht wie ich es geschrieben habe

Ich werde mal meinen HiWi fragen....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]