www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraProjektion Bilinearform
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Projektion Bilinearform
Projektion Bilinearform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektion Bilinearform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Di 19.09.2006
Autor: demo

Aufgabe
Sei W C V ein Untervektorraum des eukl. VR (V, <,>) und (w1,..,wr) eine ONB (orthonormalBasis) v. W bzgl <,>.
Für vCV ist dann
   p(v)= <v,w1>w1+....+<v,wr>wr
"p ist die orthogonale Projektion von V auf w"

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dieses Lemma kann ich nicht nachvollziehen. Ich weiss nicht ob der Satz in " .." richtig ist.
Falls es das bedeutet, wie kann dieser p(v)=.. -Ausdruck eine Projektion sein?
Das Skalarprodukt von v und w1 mal w1 macht was?
Ich grübel da schon eine ganze Weile, wäre toll wenn mir jemand das erklären könnte.Vielen Dank und schönen Tag


        
Bezug
Projektion Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Mi 20.09.2006
Autor: just-math

Hallo demo,

wenn [mm] v\in [/mm] V und [mm] w_i,1\leq i\leq [/mm] r ONB von W bezogen auf   Skalarprodukt [mm] ,\cdot,\cdot [/mm] > ist, so ist

p(v) wie bei Dir definiert einfach eine Linearkombination von Vektoren [mm] w_1,\ldots w_r [/mm] mit Koeffizienten [mm] ,\ldots [/mm] , [mm] [/mm]

Wenn zB [mm] <\:\: [/mm] > das Standardskalarprodukt von [mm] \IR^n [/mm] ist, so ist <v,w> Länge von der Projektion von v in Richtung w (zumindest wenn <w,w>=1).

Gruss

just-math

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]