www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraProjektion von Vektor
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Projektion von Vektor
Projektion von Vektor < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektion von Vektor: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:36 Mo 20.11.2006
Autor: ahering

Aufgabe
Bestimmen Sie die Projektion des Vektors X = (X1, . . . ,Xn)' auf den Unterraum der konstanten Vektoren, d. h. auf L = {(a, . . . , a)' | [mm] \in \IR}. [/mm]

So, komme irgendwie nicht weiter mit der Aufgabe. Aus der Schule weiß ich noch, dass man bei einer Projektion eines Vektors in eine aus zwei Vektoren aufgespannte Ebene den Vektor irgendwie als Linearkombination der beiden anderen Vektoren darstellt. Wie soll das hier denn funktionieren? Und was ist eigentlich ein "Unterraum der konstanten Vektoren"? Was kann ich mir darunter vorstellen.

Bin soweit, dass man hier die Länge der Strecke zwischen X1 und a, X2 und a ... Xn und a minimieren muss. Also min [mm] \wurzel[]{\summe_{i=1}^{n}(xi-a)^{2}} [/mm]

Könnt ihr mir bitte weiterhelfen, irgendwie stecke ich fest.

Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Projektion von Vektor: So nicht lösbar
Status: (Antwort) fertig Status 
Datum: 16:41 Di 21.11.2006
Autor: moudi

Hallo ahering

Die Frage ist so wie sie du gestellt hast nicht lösbar. Man muss wissen entlang welchen Unterraums man projiziert! Ist hier vielleicht die Orthogonalprojektion gemeint?

In diesem Fall gilt für die Projektion P(X), dass [mm] $X-P(X)\perp [/mm] P(X)$. Gilt [mm] $P(X)=(a,a,\dots, [/mm] a)$, dann kannst du aus der Tatsache, dass das Skalatprodukt von P(X) und X-P(X) gleich 0 ist folgern, dass
[mm] $a=\frac{x_1+\dots+x_n}{n}$ [/mm] das arithmetische Mittel der Vektorkomponenten ist.

mfG Moudi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]