www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesProjektionsabbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Projektionsabbildung
Projektionsabbildung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektionsabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Fr 21.04.2017
Autor: Franzi17

Aufgabe
1.) Bestimmen Sie die Projektion des Vektors v = (1, 1, 1) auf den Untervektorraum
Spann(v1, v2) von R3
v1 = (2,1,1) , v2 = (1,2,1)

2.) Sei U ein Untervektorraum von [mm] \IR_m [/mm] und p : [mm] \IR_m [/mm] → U die zugehörige Projektionsabbildung.
(a) Zeigen Sie,
[mm] \begin{Vmatrix} P(v)-v \\ \end{Vmatrix} [/mm]

[mm] \begin{Vmatrix} u-v \\ \end{Vmatrix} [/mm]
für alle v ∈ [mm] \IR_m [/mm] und alle u ∈ U.
(b) Zeigen Sie, dass Gleichheit in (a) nur für u = p(v) gilt.

Hallo,
Ich habe ein Verständnisproblem was die Projektionsabbildungen betrifft.
Ich weiss, dass:

P(V) = [mm] \produkt_{i=1}^{N} * u_i [/mm]

Und die Bedingungen erfüllt:
1.) <v-p(v), u> = 0
2.) p(u) = u

Bei Teil 1.)
Spann(v1,v2) = a*v1 + b*v2 = [mm] \begin{pmatrix} 2a+b \\ a+2b \\ a+b \end{pmatrix} [/mm]
Aber, wenn ich das als u in die Formel für p(v) einsetze, erfüllt das Ergebnis keine der Bedingungen.

Bei Teil 2.)
Ich habe es versucht mit Bedingung 1.) umzuformen.
Aber es kommt auf keinen grünen Zweig.
Vielen Dank für euere Hilfe!!


        
Bezug
Projektionsabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Fr 21.04.2017
Autor: angela.h.b.


> 1.) Bestimmen Sie die Projektion des Vektors v = (1, 1, 1)
> auf den Untervektorraum
> Spann(v1, v2) von R3
>  v1 = (2,1,1) , v2 = (1,2,1)
>  
> 2.) Sei U ein Untervektorraum von [mm]\IR_m[/mm] und p : [mm]\IR_m[/mm] → U
> die zugehörige Projektionsabbildung.
>  (a) Zeigen Sie,
>  [mm]\begin{Vmatrix} P(v)-v \\ \end{Vmatrix}[/mm]
> ≤
>  [mm]\begin{Vmatrix} u-v \\ \end{Vmatrix}[/mm]
>  für alle v ∈ [mm]\IR_m[/mm] und alle u
> ∈ U.
> (b) Zeigen Sie, dass Gleichheit in (a) nur für u = p(v)
> gilt.
>  Hallo,
> Ich habe ein Verständnisproblem was die
> Projektionsabbildungen betrifft.
> Ich weiss, dass:
>  
> P(V) = [mm] \red{\summe_{i=1}^{N}} * u_i[/mm]

Hallo,

die Formel allein reicht nicht!
Man muß auch wissen, was die Buchstaben bedeuten.
Ich gehe mal stark davon aus, daß die [mm] u_i [/mm] orthogonale Einheitsvektoren sind, die den Raum aufspannen, auf den projiziert werden soll.

>  
> Und die Bedingungen erfüllt:
>  1.) <v-p(v), u> = 0

>  2.) p(u) = u
>  
> Bei Teil 1.)
> Spann(v1,v2) = a*v1 + b*v2 = [mm]\begin{pmatrix} 2a+b \\ a+2b \\ a+b \end{pmatrix} [/mm]
>  
> Aber, wenn ich das als u in die Formel für p(v) einsetze,
> erfüllt das Ergebnis keine der Bedingungen.

Schade, daß Du nicht zeigst, was genau Du getan hast...


Du hast hier gegeben

[mm] v=\vektor{1\\1\\1}, [/mm]
[mm] w_1=\vektor{2\\1\\1}, [/mm]
[mm] w_2=\vektor{1\\2\\1}. [/mm]

[mm] w_1, w_2 [/mm] sind nun weder Einheitsvektoren noch orthogonal zueinander!
Möchtest Du Deine Formel
[mm] p(v)=u_1+u_2 [/mm]
verwenden, mußt Du zuerst eine Orthonormalbasis [mm] u_1, u_2 [/mm] des aufgespannten Raumes bestimmen!
So sollte es dann passen.


Du kannst aber auch so vorgehen:
bestimme einen Vektor [mm] w_3, [/mm] der senkrecht zu [mm] w_1 [/mm] und [mm] w_2 [/mm] ist.

Dann bestimme Koeffizienten [mm] a_i [/mm] mit [mm] v=a_1w_1+a_2w_2+a_3w_3. [/mm]

Es ist dann [mm] p(v)=a_1w_1+a_2w_2. [/mm]

LG Angela






>
> Bei Teil 2.)
>  Ich habe es versucht mit Bedingung 1.) umzuformen.
> Aber es kommt auf keinen grünen Zweig.

Zeig doch mal, was Du getan hast.

LG Angela

> Vielen Dank für euere Hilfe!!
>  


Bezug
                
Bezug
Projektionsabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 Fr 21.04.2017
Autor: donquijote


> > 1.) Bestimmen Sie die Projektion des Vektors v = (1, 1, 1)
> > auf den Untervektorraum
> > Spann(v1, v2) von R3
>  >  v1 = (2,1,1) , v2 = (1,2,1)
>  >  
> > 2.) Sei U ein Untervektorraum von [mm]\IR_m[/mm] und p : [mm]\IR_m[/mm] → U
> > die zugehörige Projektionsabbildung.
>  >  (a) Zeigen Sie,
>  >  [mm]\begin{Vmatrix} P(v)-v \\ \end{Vmatrix}[/mm]
> > ≤
>  >  [mm]\begin{Vmatrix} u-v \\ \end{Vmatrix}[/mm]
>  >  für alle v ∈ [mm]\IR_m[/mm] und alle
> u
> > ∈ U.
> > (b) Zeigen Sie, dass Gleichheit in (a) nur für u = p(v)
> > gilt.
>  >  Hallo,
> > Ich habe ein Verständnisproblem was die
> > Projektionsabbildungen betrifft.
> > Ich weiss, dass:
>  >  
> > P(V) = [mm] \produkt_{i=1}^{N} * u_i[/mm]
>  
> Hallo,
>  
> die Formel allein reicht nicht!
>  Man muß auch wissen, was die Buchstaben bedeuten.
>  Ich gehe mal stark davon aus, daß die [mm]u_i[/mm] Eineitsvektoren
> sind, die den Raum aufspannen, auf den projiziert werden
> soll.
>  
> >  

> > Und die Bedingungen erfüllt:
>  >  1.) <v-p(v), u> = 0

>  >  2.) p(u) = u
>  >  
> > Bei Teil 1.)
> > Spann(v1,v2) = a*v1 + b*v2 = [mm]\begin{pmatrix} 2a+b \\ a+2b \\ a+b \end{pmatrix} [/mm]
>  
> >  

> > Aber, wenn ich das als u in die Formel für p(v) einsetze,
> > erfüllt das Ergebnis keine der Bedingungen.
>
> Schade, daß Du nicht zeigst, was genau Du getan hast...
>  
>
> Du hast hier
>  
> [mm]v=\vektor{1\\1\\1},[/mm]
>  [mm]u_1=\bruch{1}{\wurzel{6}}\vektor{2\\1\\1},[/mm]
>  [mm]u_2=\bruch{1}{\wurzel{6}}\vektor{1\\2\\1}[/mm]
>  
> es ist [mm]p(v)=u_1+u_2.[/mm]
>  
> So sollte es dann passen.

Hallo,
hier muss ich Einspruch erheben. Die benutzte Formel setzt voraus, dass [mm]u_1[/mm] und [mm]u_2[/mm] eine Orthonormalbasis des Unterraums bilden, also nicht nur normiert sind, sondern auch senkrecht aufeinander stehen. Außerdem sollte statt dem Produktzeichen eine Summe stehen.

>  
>
>
> >
> > Bei Teil 2.)
>  >  Ich habe es versucht mit Bedingung 1.) umzuformen.
> > Aber es kommt auf keinen grünen Zweig.
>
> Zeig doch mal, was Du getan hast.
>  
> LG Angela
>  > Vielen Dank für euere Hilfe!!

>  >  
>  


Bezug
                        
Bezug
Projektionsabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 Fr 21.04.2017
Autor: angela.h.b.


> Hallo,
>  hier muss ich Einspruch erheben. Die benutzte Formel setzt
> voraus, dass [mm]u_1[/mm] und [mm]u_2[/mm] eine Orthonormalbasis des
> Unterraums bilden, also nicht nur normiert sind, sondern
> auch senkrecht aufeinander stehen. Außerdem sollte statt
> dem Produktzeichen eine Summe stehen.

Hallo,

oh.
Da habe ich geschlafen.
Ich bearbeite es.

LG Angela


Bezug
                
Bezug
Projektionsabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Fr 21.04.2017
Autor: Franzi17

Hallo,
danke für euere Antwort!
Ich habe auf die 2 Vektoren das Gram Schmidt Verfahren angewendet:
u1 = [mm] \begin{pmatrix} 2/(\wurzel{6}) \\ 1/(\wurzel{6}) \\ 1/(\wurzel{6}) \end{pmatrix} [/mm]
u2 =  [mm] \begin{pmatrix} -4/(\wurzel{66}) \\ 7(/(\wurzel{66}) \\ (1 /(\wurzel{66}) \end{pmatrix} [/mm]
Eingesetzt ergibt es:
p(v) =  [mm] \begin{pmatrix} 12/11 \\ 12/11 \\ 8/11 \end{pmatrix} [/mm]
Ich hoffe das stimmt..

zu 2.)
Ich hatte angefangen mit:

<p(v)-v, u> = <p(v),u> - <v,u> = <v,u> - <v,u> = 0
Also steht auch p(v)-v senkrecht auf allen u
Aber weiter bin ich nicht gekommen.

Danke für die Hilfe!






Bezug
                        
Bezug
Projektionsabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:44 Sa 22.04.2017
Autor: angela.h.b.


> Hallo,
> danke für euere Antwort!
>  Ich habe auf die 2 Vektoren das Gram Schmidt Verfahren
> angewendet:
> u1 = [mm]\begin{pmatrix} 2/(\wurzel{6}) \\ 1/(\wurzel{6}) \\ 1/(\wurzel{6}) \end{pmatrix}[/mm]
>  
> u2 =  [mm]\begin{pmatrix} -4/(\wurzel{66}) \\ 7(/(\wurzel{66}) \\ (1 /(\wurzel{66}) \end{pmatrix}[/mm]
>  
> Eingesetzt ergibt es:
>  p(v) =  [mm]\begin{pmatrix} 12/11 \\ 12/11 \\ 8/11 \end{pmatrix}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> Ich hoffe das stimmt..

Hallo,

ob Dein Ergebnis stimmt, könntest Du auch selbst prüfen, indem Du den von mir vorgeschlagenen Alternativweg durchrechnest. (Ja, Dein Ergebnis stimmt.)


>
> zu 2.)
> Ich hatte angefangen mit:
>  
> <p(v)-v, u> = <p(v),u> - <v,u> = <v,u> - <v,u> = 0
>  Also steht auch p(v)-v senkrecht auf allen u
> Aber weiter bin ich nicht gekommen.

Ich habe mir das so überlegt:

man kann u zu einer ONB (u,u_2,...,u_k) von U ergänzen, und diese zu einer ONB (u,u_2,...,u_k,w_{k+1},...,w_m} des \IR^m.

Dann können wir v schreiben als v=u+u'+w mit u'\in Span( u_2,...,u_k) und w\in Span(w_{k+1},...,w_m).

Jetzt abe ich einfach mal
||P(v)-v||^2 und ||u-v||^2 ausgerechnet.
Wahrscheinlich geht  es eleganter, aber funktioniert hat es jedenfalls.

LG Angela

>
> Danke für die Hilfe!
>  
>
>
>
>  


Bezug
                                
Bezug
Projektionsabbildung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:15 Sa 22.04.2017
Autor: Franzi17

Hallo,
danke für deine Antwort!
Ich habe noch etwas Verständnisschwierigkeiten bei dem Punkt u', u' [mm] \in [/mm] spann(u, [mm] u_2, [/mm] ..., [mm] u_k) [/mm]
Wie kommt dieses u' in  v= u+ u' + w zustande?

Ich habe noch etwas zu dem Thema gefunden:
[mm] \left| u-v \right|^2 [/mm] =  [mm] \left| u-p(v) \right^2 [/mm] + [mm] \left| p(v)-v \right|^2 [/mm]
also grösser/ gleich: [mm] \left| p(v)-v \right|^2 [/mm]

Der Hinweis dazu ist, mit dem Satz des Pythagoras:
Ich habe folgendes bisher:
[mm] \left| u+v \right|^2 [/mm] + [mm] \left| u-v \right|^2 [/mm] = [mm] 2\left| u \right|^2 [/mm] + 2 [mm] \left| v \right|^2 [/mm]

also:
[mm] \left| u-v \right|^2 [/mm] = [mm] 2\left| u \right|^2 [/mm] + 2 [mm] \left| v \right|^2 [/mm] - [mm] \left| u+v \right|^2 [/mm]
Wie ich das zu Termen mit p(v) umformen kann, habe ich noch nicht herausgefunden...

Bezug
                                        
Bezug
Projektionsabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Sa 22.04.2017
Autor: Franzi17

Mit den Betragsstichen, meine ich die Doppelstriche.

Bezug
                                        
Bezug
Projektionsabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Sa 22.04.2017
Autor: Franzi17

Habe es geschafft so umzuformen :)
Danke für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]