www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale SprachenPumping Lemma - Fakultät
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Formale Sprachen" - Pumping Lemma - Fakultät
Pumping Lemma - Fakultät < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pumping Lemma - Fakultät: Beweisidee
Status: (Frage) überfällig Status 
Datum: 13:22 So 30.10.2011
Autor: msg08

Aufgabe
[mm] L_{fact} [/mm] = { [mm] a^{m!} [/mm] | m [mm] \ge [/mm] 3 } ist Sprache keines endl. Automaten

Du wählst ein n,

ich wähle w = [mm] a^{n!} [/mm] (garantiert |w| [mm] \ge [/mm] n)
du zerlegst w = [mm] a^{n!} [/mm] als uzv mit |uz| [mm] \le [/mm] n, |z| [mm] \ge [/mm] 1
dann ist uv [mm] \not\in [/mm] L_fact, denn:

sei |z|=j [mm] \le [/mm] n dann ist |uv| = n!-j > (n-1)! falls n [mm] \ge [/mm] 3.

Es gibt daher keinen endlichen Automaten A mit [mm] L_{fact}=L(A) [/mm]

Also, meine Frage bezieht sich auf folgenden Sachverhalt. Warum darf ich bei meinem gewählten w = [mm] a^{n!} [/mm] behaupten, dass wenn ich erste n Zeichen von w nehme, sich da bereits ein Zyklus z befindet? Würde ich also zum Beispiel für m = 3 = n wählen, hätte ich ja erstmal das Wort w = [mm] a^{3!} [/mm] = [mm] a^{6} [/mm] und es gelte |uz| = [mm] a^{3}. [/mm] Für z gilt ja wegen "|uz| [mm] \le [/mm] n, |z| [mm] \ge [/mm] 1" z = [mm] a^{1}, a^{2} [/mm] oder [mm] a^{3}. [/mm] Die Aussage ist ja also, dass ich quasi einen Automaten mit 3 Zuständen habe, und dass ich eben bei einem Wort der Länge 3 auf jeden Fall einen Zyklus habe. Aber, warum darf ich es so behaupten. Also ich komm hier echt nicht weiter. Wenn ich mir jetzt zum Beispiel sagte, n ist Menge meiner Zustände und  ich wähle mir ein w mit solchem n, also w = [mm] a^{n!}, [/mm] versteh ich es ja auch. Die Zerlegung würde halt dann so mit z aufgehen. Muss ich da was anders lesen, oder muss ich nun wirklich von so einem n = "Anzahl Zustände" ausgehen?

        
Bezug
Pumping Lemma - Fakultät: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 Di 01.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]