www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenPunkt, Gerade und Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Punkt, Gerade und Ebenen
Punkt, Gerade und Ebenen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt, Gerade und Ebenen: bitte Prüfen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:17 So 04.06.2006
Autor: BeniMuller

Aufgabe

Gegeben :

Punkt [mm]A = ( 1/ 2/ 2)[/mm]
Punkt [mm]P = ( 2/ -3/ 5)[/mm]
Gerade [mm]g : \ \vec{r} \ = \ \vektor{2 \\ 2\\2 } \ + \ t*\vektor{2\\1\\0} \ , \ t \in \ \IR [/mm]
Ebene [mm]F : \ 2x \ +\ 3y \ +\ 3z \ -\ 10 \ =\ 0[/mm]

Die Ebene [mm]E[/mm] geht durch die Gerade [mm]g[/mm] und den Punkt [mm]A[/mm].
Bestimmen Sie die Koordinatengleichung von [mm]E[/mm].
Auf welcher der beiden Ebenen liegt der Punkt [mm]P[/mm] ?



Ansatz: Ebene [mm]E: ax \ + \ by \ + \ cz \ = \ d [/mm]
Normale zur Ebene [mm]E[/mm] ist der Vektor [mm]\vec{n}_{E} \ = \ \vektor{a\\b\\c}[/mm]

Zur Berechnung der Normalen wählen wir zwei beliebige, nicht zusammenfallende Punkte [mm]B[/mm] und [mm]C[/mm] auf der Geraden [mm]g[/mm] indem wir in der Parameterdarstellung der Geraden [mm][/mm] z.B. [mm]t_{1} =0[/mm] und [mm]t_{2} = 1[/mm] setzen:

[mm]\vec{b} \ = \ \vektor{2\\2\\2} \ + \ 0 \ * \ \vektor{2\\1\\0} \ = \ \vektor{2\\2\\2} [/mm]

[mm]\vec{c} \ = \ \vektor{2\\2\\2} \ + \ 1 \ * \ \vektor{2\\1\\0} \ = \ \vektor{4\\3\\2} [/mm]

Die Normale steht auf allen Geraden der Ebene senkrecht, also insbesondere auf

[mm](\vec{b} \ - \ \vec{a}) [/mm] und [mm](\vec{c} \ - \ \vec{a}) [/mm]

Wir bilden das Vektroprodukt, um zu zwei Vektoren einer Ebene die Senkrechte zu finden.

[mm] \vec{n}_{E} \ = \ (\vec{b} \ - \ \vec{a} ) \times (\vec{c} \ - \ \vec{a} ) \ = \ (\vektor{2\\2\\2}-\vektor{1\\2\\2}) \ \times \ (\vektor{4\\3\\2}-\vektor{1\\2\\2}) \ = \ \vektor{1\\0\\0} \times \ \vektor{3\\1\\0} \ = \ \vektor{0\\0\\1} [/mm]

Daraus ergibt sich für die Koordinatengleichung der Ebene [mm]E[/mm]:

[mm]0x \ + \ 0y \ + \ 1*z \ = \ d[/mm]

Um [mm]d[/mm] zu bestimmen, setzen wie den Punkt [mm]A \ = \ (1 / 2 / 2)[/mm] in die eben gewonnene Ebenengleichung ein:

[mm]0*1 \ + \ 0*2 \ + \ 1*2 \ = \ d[/mm]

daraus: [mm]d \ = \ 2[/mm] in die Ebenengleichung von [mm]E[/mm] eingesetzt:

[mm]E: \ 0x \ + \ 0y \ + \ 1*z \ = \ 2[/mm]

In welcher Ebene liegt jetzt der Punkt [mm]P[/mm]  ?

Test von Punkt [mm]P = (2 / -3 / 5)[/mm] mit den beiden Ebenen [mm]E[/mm] und [mm]F[/mm] :

[mm]E: \ 0x \ + \ 0y \ + \ 1*z \ = \ 2[/mm]
[mm] \ 0*2 \ + \ 0*(-3) \ + \ 1*5 \ = \ 5 \ \not= \ 2[/mm] falsch

[mm]F : 2x \ + \ 3y \ + \ 3z \ = \ 10 [/mm]
[mm]2*2 \ + \ 3*(-3) \ + \ 3*5 \ =4 \ - \ 9 \ + \ 15 \ = \ 10 \ = \ 10[/mm] richtig

Der Punkt [mm]P[/mm] liegt in der Ebene [mm]F[/mm]

******
Bitte um Kontrolle und Tipps für alternative Wege.

Herzliche Pfingstgrüsse aus Zürich

        
Bezug
Punkt, Gerade und Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 So 04.06.2006
Autor: rotespinne

Hallo!

Wenn wir etwas prüfen sollen wäre es auch gut wenn irgendwo eine Aufgabe samt Rechung wäre??

Grüße von der Spinne

Bezug
                
Bezug
Punkt, Gerade und Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 So 04.06.2006
Autor: BeniMuller

Hallo Rote Spinne, war nicht beabsichtigt, dass das schon unfertig abgeschickt wurde. Jetzt ist meine Frage abgeschlossen und Dein kritischer Blick erwünscht.

Gruss

Bezug
        
Bezug
Punkt, Gerade und Ebenen: alles richtig/Alternativ
Status: (Antwort) fertig Status 
Datum: 22:54 So 04.06.2006
Autor: Disap

Hi.

> Gegeben :
>  
> Punkt [mm]A = ( 1/ 2/ 2)[/mm]
>  Punkt [mm]P = ( 2/ -3/ 5)[/mm]
>  Gerade [mm]g : \ \vec{r} \ = \ \vektor{2 \\ 2\\2 } \ + \ t*\vektor{2\\1\\0} \ , \ t \in \ \IR[/mm]
>  
> Ebene [mm]F : \ 2x \ +\ 3y \ +\ 3z \ -\ 10 \ =\ 0[/mm]
>  
> Die Ebene [mm]E[/mm] geht durch die Gerade [mm]g[/mm] und den Punkt [mm]A[/mm].
> Bestimmen Sie die Koordinatengleichung von [mm]E[/mm].
>  Auf welcher der beiden Ebenen liegt der Punkt [mm]P[/mm] ?
>  
>
>
> Ansatz: Ebene [mm]E: ax \ + \ by \ + \ cz \ = \ d[/mm]
>  Normale
> zur Ebene [mm]E[/mm] ist der Vektor [mm]\vec{n}_{E} \ = \ \vektor{a\\b\\c}[/mm]
>  
> Zur Berechnung der Normalen wählen wir zwei beliebige,
> nicht zusammenfallende Punkte [mm]B[/mm] und [mm]C[/mm] auf der Geraden [mm]g[/mm]
> indem wir in der Parameterdarstellung der Geraden[mm][/mm] z.B.
> [mm]t_{1} =0[/mm] und [mm]t_{2} = 1[/mm] setzen:
>  
> [mm]\vec{b} \ = \ \vektor{2\\2\\2} \ + \ 0 \ * \ \vektor{2\\1\\0} \ = \ \vektor{2\\2\\2}[/mm]
>  
> [mm]\vec{c} \ = \ \vektor{2\\2\\2} \ + \ 1 \ * \ \vektor{2\\1\\0} \ = \ \vektor{4\\3\\2}[/mm]
>  
> Die Normale steht auf allen Geraden der Ebene senkrecht,
> also insbesondere auf
>  
> [mm](\vec{b} \ - \ \vec{a})[/mm] und [mm](\vec{c} \ - \ \vec{a})[/mm]
>  
> Wir bilden das Vektroprodukt, um zu zwei Vektoren einer
> Ebene die Senkrechte zu finden.
>  
> [mm]\vec{n}_{E} \ = \ (\vec{b} \ - \ \vec{a} ) \times (\vec{c} \ - \ \vec{a} ) \ = \ (\vektor{2\\2\\2}-\vektor{1\\2\\2}) \ \times \ (\vektor{4\\3\\2}-\vektor{1\\2\\2}) \ = \ \vektor{1\\0\\0} \times \ \vektor{3\\1\\0} \ = \ \vektor{0\\0\\1} [/mm]
>  
> Daraus ergibt sich für die Koordinatengleichung der Ebene
> [mm]E[/mm]:
>  
> [mm]0x \ + \ 0y \ + \ 1*z \ = \ d[/mm]

[ok]

> Um [mm]d[/mm] zu bestimmen, setzen wie den Punkt [mm]A \ = \ (1 / 2 / 2)[/mm]
> in die eben gewonnene Ebenengleichung ein:
>  
> [mm]0*1 \ + \ 0*2 \ + \ 1*2 \ = \ d[/mm]
>  
> daraus: [mm]d \ = \ 2[/mm] in die Ebenengleichung von [mm]E[/mm] eingesetzt:
>  
> [mm]E: \ 0x \ + \ 0y \ + \ 1*z \ = \ 2[/mm]

[daumenhoch]

> In welcher Ebene liegt jetzt der Punkt [mm]P[/mm]  ?
>  
> Test von Punkt [mm]P = (2 / -3 / 5)[/mm] mit den beiden Ebenen [mm]E[/mm] und
> [mm]F[/mm] :
>  
> [mm]E: \ 0x \ + \ 0y \ + \ 1*z \ = \ 2[/mm]
>  [mm]\ 0*2 \ + \ 0*(-3) \ + \ 1*5 \ = \ 5 \ \not= \ 2[/mm]
> falsch

[ok]

> [mm]F : 2x \ + \ 3y \ + \ 3z \ = \ 10[/mm]
>  [mm]2*2 \ + \ 3*(-3) \ + \ 3*5 \ =4 \ - \ 9 \ + \ 15 \ = \ 10 \ = \ 10[/mm]
> richtig
>  
> Der Punkt [mm]P[/mm] liegt in der Ebene [mm]F[/mm]

[applaus]

> ******
>  Bitte um Kontrolle und Tipps für alternative Wege.

Alternativ kannst du auch zunächst eine Parameterform aufstellen, und zwar weißt du, dass die Ebene die Gerade g enthalten soll. Du kannst den Ortsvektor der Geraden als Ortsvektor der Ebene benutzen und der Richtungsvektor der Geraden ist einer der beiden Richtungsvektoren der Ebene. Du hast nun

[mm] $E:\vec{x}=\vektor{2 \\ 2\\2 } [/mm]  +  [mm] t*\vektor{2\\1\\0}+s \vec{u}$ [/mm]

Vektor u bildet sich nun aus dem Ortsvektor und Punkt A.

[mm] $E:\vec{x}=\vektor{2 \\ 2\\2 }\ [/mm] +  [mm] t*\vektor{2\\1\\0}+s \vektor{1\\0\\0}$ [/mm]

Nun kann man entweder auch (wieder) die Koordinatenform bilden oder die Punktprobe machen, indem du die Ebene in Parameterform mit dem Punkt P gleichsetzt.

Oder:
Du hast die Ebenengleichung und spielst das Spiel: Abstand Punkt - Ebene.

Ist der Abstand zur Ebene null, dann liegt der Punkt wohl auf/in der Ebene.

Alles klar soweit?

> Herzliche Pfingstgrüsse aus Zürich

Grüße zurück aus der Bundesrepublik.  


LG
Disap

Bezug
                
Bezug
Punkt, Gerade und Ebenen: Dank für 2. Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 So 04.06.2006
Autor: BeniMuller

Hallo Disap

Ganz herzlichen Dank für Deine Überlegungen zu alternativen Lösungswegen. Da ich diese Dinge vor 35 Jahren mal studiert habe, kommen sie mir nicht ganz unbekannt aber manchmal etwas suspekt vor.  Umso glücklicher bin ich über die schnelle und professionelle Hilfe, die von Dir und den anderen Mitgliedern des Forums hier geboten wird.

Grüsse auf dem Süden

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]