www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenPunkt auf einer Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Punkt auf einer Ebenen
Punkt auf einer Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt auf einer Ebenen: Wie ermitteln?
Status: (Frage) beantwortet Status 
Datum: 19:08 So 09.09.2007
Autor: jane882

Aufgabe
...

Wie ermittelt man einen Punkt auf der Ebenen?

E:x= ( 1 2 3)+ MÜ ( 4 5 6) +Tau ( 7 8 9)

MÜ = 0-> ( 1 2 3)
Tau = 0 ( 4 5 6)

Muss ich jetzt die beiden Vektoren addieren, um auf einen Punkt zu kommen? ( 5 7 9) ?:(

        
Bezug
Punkt auf einer Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 So 09.09.2007
Autor: Disap

Hallo jane882.

> ...
>  Wie ermittelt man einen Punkt auf der Ebenen?
>  
> E:x= ( 1 2 3)+ MÜ ( 4 5 6) +Tau ( 7 8 9)
>  
> MÜ = 0-> ( 1 2 3)
>  Tau = 0 ( 4 5 6)
>  
> Muss ich jetzt die beiden Vektoren addieren, um auf einen
> Punkt zu kommen? ( 5 7 9) ?:(

[daumenhoch] Das ist ein Punkt, der in der Ebene liegt.
Damit du aber auch etwas lernst ;) noch eine kleine Erklärung.
Die Ebene in schön: $E:x = [mm] vektor{1\\2\\3} [/mm] + [mm] \mu \vektor{4\\5\\6} [/mm] + [mm] \tau \vektor{7\\8\\9}$ [/mm]

Wie ermittelt man eine solche Ebene? Indem man drei Punkte A, B, C kennt. Der erste Punkt (A...oder B oder auch C) dient als Ortsvektor, also der Vektor, den man braucht, um quasi auf die Ebene heraufzukommen.
Somit ist in unserem Fall der Ortsvektor [mm] \vektor{1\\2\\3} [/mm] auch ein Punkt der Ebene.
Nun hat die Ebene aber zwei Richtungsvektoren, abhängig von den Parametern [mm] \mu [/mm] und [mm] \tau. [/mm] Jetzt kannst (so hast du es gemacht) [mm] \tau [/mm] gleich 0 setzen und [mm] \mu [/mm] gleich 1 und erhälst damit
[mm] \vektor{1\\2\\3} [/mm] + 1* [mm] vektor{4\\5\\6} [/mm] einen von unendlich vielen Punkten, die in der Ebene liegen.
Du kannst aber auch rechnen:

[mm] $vektor{1\\2\\3} [/mm] + 17 [mm] \vektor{4\\5\\6} [/mm] - 8 u [mm] vektor{7\\8\\9}$ [/mm] Das ist bloss eine hässliche Rechnung :-)

Klar nun, wie du einen Punkt auf der Ebene ermittelst?

MfG!
Disap


Bezug
                
Bezug
Punkt auf einer Ebenen: weiterer punkt:)
Status: (Frage) beantwortet Status 
Datum: 19:30 So 09.09.2007
Autor: jane882

Aufgabe
...

E: ( 1 0 3)+ r*( 1 0 0)+ s* ( 1 1 0)

ist ( 0 -3 -3) ein punkt auf der ebenen?
habe ich das richtig ermittelt ?

r= -3 s= 2

...
hör mal..wenn ich den abstand von gerade und ebenen ermitteln will...muss ich dann einen punkt von der ebenen mit einem punkt der geraden subtrahieren...und der vektor der dann da rauskommt mit dem normalenvektor multiplizieren?...halt skalarprodukt anwenden und dann hätte ich ja einen wert? wäre das dann der abstand?

Bezug
                        
Bezug
Punkt auf einer Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 So 09.09.2007
Autor: Disap


> ...
>  E: ( 1 0 3)+ r*( 1 0 0)+ s* ( 1 1 0)
>  
> ist ( 0 -3 -3) ein punkt auf der ebenen?
>  habe ich das richtig ermittelt ?
>  
> r= -3 s= 2

Ja, das stimmt.

> ...
>  hör mal..wenn ich den abstand von gerade und ebenen
> ermitteln will...muss ich dann einen punkt von der ebenen
> mit einem punkt der geraden subtrahieren...und der vektor
> der dann da rauskommt mit dem normalenvektor
> multiplizieren?...halt skalarprodukt anwenden und dann
> hätte ich ja einen wert? wäre das dann der abstand?

Nein, das bringt absolut nichts.
Bei Abstand Ebene - parallele Gerade kannst du u. a. auf zwei alte Mittel zurückgreifen (es geht sicherlich auch anders, ...) :

1) Du suchst dir einen beliebigen Punkt auf der Ebene und rechnest dann: Abstand Punkt - Gerade

2) Du suchst dir einen beliebigen Punkt auf der Gerade und rechnest dann:
Abstand Punkt - Ebene





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]