www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelPunkt mit Abstand von Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Längen, Abstände, Winkel" - Punkt mit Abstand von Ebene
Punkt mit Abstand von Ebene < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt mit Abstand von Ebene: Koordina Punkt Abstand gegeben
Status: (Frage) beantwortet Status 
Datum: 16:24 Do 11.11.2010
Autor: kaufparkangucker

Aufgabe
A(3|4|5); B(5|6|6); C(8|6|6); D(6|4|5); M(5,5|5|5,5);

ABCD bilden eine Raute. Die Gerade g die senkrecht auf der Raute steht und durch den Diagonalenschnittpunkt M geht hat den Richtungsvektor (0|1|-2).
Die Raute ist Grundfläche einer Pyramide deren Spitze S auf g liegt. Bestimmen sie die Koordinaten der Spitzen so das die dazugehörigen Spitzen die Höhe 10 haben.

Lösungen:
S'  (5,5 | 5+2*sqrt(5) | 5,5-4*sqrt(5))
S'' (5,5 | 5-2*sqrt(5) | 5,5+4*sqrt(5))

Hallo,

die Aufgabe bekomme ich einfach nicht so gelöst das ich auf die gegebenen Ergebnisse komme.

Mein Ansatz ist so das ich den Normalenvektor(N) von g als Richtungsvektor und die Werte von M als Ortsvektor nehme. Damit habe ich g in der Form:
g=M + u*N
Für u setze ich jetzt den Abstand 10 ein und berechne gx ; gy ;gz  was S' entspricht. Mit -10 als Abstand finde ich dann S''.
Damit bekomme ich für S (5,5 | 15 | -14,5) raus was ja nicht stimmt.

nehme ich die normale Abstandsformel umd den Abstand von SM:
10=sqrt[ [mm] (5,5-Sx)^2 [/mm] + [mm] (5-Sy)^2 [/mm] + [mm] (5,5-Sz)^2 [/mm] ]
habe ich leider keine Idee wie ich es lösen soll.

Ich hoffe mir kann jemand helfen und mir sagen wie man das Problem löst.

Vielen Dank für die Hilfe

Rocco

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Punkt mit Abstand von Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Do 11.11.2010
Autor: MathePower

Hallo kaufparkangucker,


[willkommenmr]


> A(3|4|5); B(5|6|6); C(8|6|6); D(6|4|5); M(5,5|5|5,5);
>  
> ABCD bilden eine Raute. Die Gerade g die senkrecht auf der
> Raute steht und durch den Diagonalenschnittpunkt M geht hat
> den Richtungsvektor (0|1|-2).
>  Die Raute ist Grundfläche einer Pyramide deren Spitze S
> auf g liegt. Bestimmen sie die Koordinaten der Spitzen so
> das die dazugehörigen Spitzen die Höhe 10 haben.
>  
> Lösungen:
>  S'  (5,5 | 5+2*sqrt(5) | 5,5-4*sqrt(5))
>  S'' (5,5 | 5-2*sqrt(5) | 5,5+4*sqrt(5))
>  Hallo,
>  
> die Aufgabe bekomme ich einfach nicht so gelöst das ich
> auf die gegebenen Ergebnisse komme.
>  
> Mein Ansatz ist so das ich den Normalenvektor(N) von g als
> Richtungsvektor und die Werte von M als Ortsvektor nehme.
> Damit habe ich g in der Form:
>  g=M + u*N
>  Für u setze ich jetzt den Abstand 10 ein und berechne gx
> ; gy ;gz  was S' entspricht. Mit -10 als Abstand finde ich
> dann S''.
>  Damit bekomme ich für S (5,5 | 15 | -14,5) raus was ja
> nicht stimmt.


Der Betrag von u*N muß 10 sein, demnach

[mm]\vmat{u*N}=10[/mm]

Daraus nun das  u bestimmen.


>  
> nehme ich die normale Abstandsformel umd den Abstand von
> SM:
>  10=sqrt[ [mm](5,5-Sx)^2[/mm] + [mm](5-Sy)^2[/mm] + [mm](5,5-Sz)^2[/mm] ]
>  habe ich leider keine Idee wie ich es lösen soll.
>  
> Ich hoffe mir kann jemand helfen und mir sagen wie man das
> Problem löst.
>  
> Vielen Dank für die Hilfe
>  
> Rocco
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Punkt mit Abstand von Ebene: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 06:55 Fr 12.11.2010
Autor: kaufparkangucker

|u*N|=10  hatte ich zuerst auch mal hingeschrieben.
Löst man das auf steht follgendes da:
Mit N=(0|1|-2)

[mm] sqrt[(0-ux)^2 [/mm] + [mm] (1-uy)^2 [/mm] + [mm] (-2-uz)^2] [/mm] = 10

Und hier weis ich nicht weiter. Ich habe keine Ahnung wie ich daraus ux uy uz berechnen soll.

Das sollte auch gehen indem ich die Ebene in Koordinatenform formuliere (aus ABC Parameterform aufstellen und diese dann in die Koordinatenform überführen):
0*ux + 1*uy -2*uz + 6 = 0
Hier weis ich allerdings genau so nicht wie ich ux uy uz berechnen soll.

Danke für weitere Hilfe.

fG Rocco

Bezug
                        
Bezug
Punkt mit Abstand von Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Fr 12.11.2010
Autor: Pappus


> |u*N|=10  hatte ich zuerst auch mal hingeschrieben.
>  Löst man das auf steht follgendes da:
>  Mit N=(0|1|-2)
>  
> [mm]sqrt[(0-ux)^2[/mm] + [mm](1-uy)^2[/mm] + [mm](-2-uz)^2][/mm] = 10
>  
> Und hier weis ich nicht weiter. Ich habe keine Ahnung wie
> ich daraus ux uy uz berechnen soll.
>  
> Das sollte auch gehen indem ich die Ebene in
> Koordinatenform formuliere (aus ABC Parameterform
> aufstellen und diese dann in die Koordinatenform
> überführen):
>  0*ux + 1*uy -2*uz + 6 = 0
>  Hier weis ich allerdings genau so nicht wie ich ux uy uz
> berechnen soll.
>  
> Danke für weitere Hilfe.
>  
> fG Rocco

Guten Morgen!

1. $S [mm] \in g~\implies~ \vec [/mm] s = [mm] \vektor{5,5\\5\\5,5}+u \cdot \vektor{0\\1\\-2}$ [/mm]

2. MathePower schrieb Dir, dass Du diese Gleichung: [mm] $|u\cdot \vec [/mm] n| = 10$  nach u auflösen sollst.

3. Betragsstriche "verschwinden" durch Quadrieren:

[mm] u^2 \cdot \vektor{0\\1\\-2}^2=100~\implies~5u^2=100$ [/mm]

4. u berechnen und in g einsetzen. Fettich!

Salve

Pappus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]