www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Punktemenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Punktemenge
Punktemenge < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktemenge: Überprüfung
Status: (Frage) beantwortet Status 
Datum: 16:01 So 17.01.2010
Autor: Mausibaerle

Aufgabe
Zeichne die Punktemenge, für die gilt:
a)   [mm] x^{2}-y^{2}\le0 [/mm]
b)   [mm] x^{2}+y^{2}-2xy\le1 [/mm]

Hallo Ihr Lieben,
ich bin mir mit diesem Thema ziemlich unsicher und würde deshalb gerne wissen, ob meine Überlegungen SInn machen.

Für a) ergeben sich mir zwei Ungleichungen, nämlich:
1. [mm] y\ge0 [/mm] : [mm] y\ge [/mm] x
2. y<0    : y<-x
Demnach ergibt sich in der Zeichnung im Koordiantensystem ein Bereich von den Winkelhalbierenden des 2. und 3. Quadranten, einschließlich der Geraden.

Für b) folglich:
1.  [mm] y\ge [/mm] x-1
2.  [mm] y\ge [/mm] x+1
Hier würde sich meinen Überlegungen nach der Bereich oberhalb von x+1 einschließlich der Gerade selber ergeben.

Hab ich mich da irgendwo verhaut oder macht es Sinn?!
Danke schön!! Schönen Sonntag noch...




        
Bezug
Punktemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 So 17.01.2010
Autor: abakus


> Zeichne die Punktemenge, für die gilt:
>  a)   [mm]x^{2}-y^{2}\le0[/mm]
>  b)   [mm]x^{2}+y^{2}-2xy\le1[/mm]
>  Hallo Ihr Lieben,
>  ich bin mir mit diesem Thema ziemlich unsicher und würde
> deshalb gerne wissen, ob meine Überlegungen SInn machen.
>  
> Für a) ergeben sich mir zwei Ungleichungen, nämlich:
>  1. [mm]y\ge0[/mm] : [mm]y\ge[/mm] x
>  2. y<0    : y<-x

Hallo,
das geht mit einer Ungleichung: | y | [mm] \ge [/mm] | x |

>  Demnach ergibt sich in der Zeichnung im Koordiantensystem
> ein Bereich von den Winkelhalbierenden des 2. und 3.
> Quadranten, einschließlich der Geraden.zweiter Lösungsbereich liegt

Die beiden Lösungsbereiche liegen zwischen den Winkelhalbierenden des 1. und 2. Quadranten
sowie
zwischen den Winkelhalbierenden des 3. und 4. Quadranten.

>  
> Für b) folglich:
>  1.  [mm]y\ge[/mm] x-1
>  2.  [mm]y\ge[/mm] x+1
>  Hier würde sich meinen Überlegungen nach der Bereich
> oberhalb von x+1 einschließlich der Gerade selber
> ergeben.

Aus [mm]x^{2}+y^{2}-2xy\le1[/mm] folgt
[mm](x-y)^2\le1[/mm]
und daraus
| x-y [mm] |\le [/mm] 1.
Für [mm] x\ge [/mm] y (also für y [mm] \le [/mm] x) wird daraus x-y [mm] \le [/mm] 1 bzw. [mm] x-1\le [/mm] y. Zusammengefasst ergibt das
[mm] x-1\le [/mm] y [mm] \le [/mm] x. Das ist ein Streifen zwischen zwei parallelen Geraden.

Im Fall x<y würde [mm] -(x-y)\le [/mm] 1 gelten, also [mm] y\le [/mm] x+1. Zusammengefast ergibt das [mm] x Fas ist wieder ein Streifen zwischen paralelen Geraden, der sich an den Streigen des ersten Falles anschließt.
Ingesamt erhältst du den Streifen zwischen y=x-1 und y=x+1 (einschließlich Begrenzungsgeraden).

Gruß Abakus

>  
> Hab ich mich da irgendwo verhaut oder macht es Sinn?!
>  Danke schön!! Schönen Sonntag noch...
>  
>
>  


Bezug
                
Bezug
Punktemenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 So 17.01.2010
Autor: Mausibaerle

Warum haben wir im Endefekt dann zwei verschiedene Lösungen?! Wo liegt denn dann mein Fehler, warum kann ich es nicht mit zwei Ungleichungen lösen?!


Bezug
                        
Bezug
Punktemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 So 17.01.2010
Autor: abakus


> Warum haben wir im Endefekt dann zwei verschiedene
> Lösungen?! Wo liegt denn dann mein Fehler, warum kann ich
> es nicht mit zwei Ungleichungen lösen?!

Das kannst du schon machen, aber dann bitte auch gründlich.

Aus [mm] y^2\ge x^2 [/mm] Kann man tatsächlich zwei Fälle ableiten.
Fall 1: [mm] y\ge [/mm] 0
Dann gilt [mm] y\ge [/mm] |x| (nicht nur [mm] y\ge [/mm] x!)
Fall 1.1: [mm] x\ge [/mm] 0
Daraus wird [mm] y\ge [/mm] x [mm] \ge [/mm] 0
Fall 1.2: x<0 und damit (das brauchen wir gleich) gilt -x>0.  
Dann gilt [mm] y\ge-x, [/mm] ingesamt also y [mm] \ge-x>0. [/mm]

Auch im Fall 2 (y<0) musst du getrennt die Unter-Fälle [mm] x\ge [/mm] 0 und x<0 betrachten.
Gruß Abakus

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]