www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenPunktsymmetrie
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Steckbriefaufgaben" - Punktsymmetrie
Punktsymmetrie < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktsymmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Mo 27.08.2007
Autor: hurricane666

Hallo,

wir hatten letztens im Unterricht eine Steckbriefaufgabe, bei welcher angegeben war, dass sie Punktsymmetrisch bezüglich des Koordinatenursprungs ist.

Aus der allgemeinen Gleichung:

f(x) = [mm] ax^{3} [/mm] + [mm] bx^{2} [/mm] + [mm] cx^{1} [/mm] + d

ergab sich also folgende:

f(x) = [mm] ax^{3} [/mm] + [mm] bx^{2} [/mm] + [mm] cx^{1} [/mm] + d

Nun habe ich die ehrenwerte Aufgabe zu erklären / beweisen, warum das geht.

Also habe ich, auf der Suche nach der Lösung, bei Wikipedia nachgeschaut und herausgefunden, wie man eine Punktsymmetrie bez. des Koordinatenursprungs nachweist.

f(-x) = [mm] a(-x)^{3} [/mm] + [mm] b(-x)^{2} [/mm] + [mm] c(-x)^{1} [/mm] + d

f(-x) = [mm] -ax^{3} [/mm] + [mm] bx^{2} [/mm] - [mm] cx^{1} [/mm] + d | * (-1)

-f(-x) = [mm] ax^{3} [/mm] - [mm] bx^{2} [/mm] + [mm] cx^{1} [/mm] - d

-f(-x) [mm] \not= [/mm] f(x)

Daran ist zu erkennen, dass alle Summanden die ein x mit geradem Exponenten beinhalten weggestrichen werden müssen, da ansonsten das Vorzeichen nicht stimmt.

Glaubt Ihr, dass das als Erklärung ausreicht?

        
Bezug
Punktsymmetrie: "positiver Beweis"
Status: (Antwort) fertig Status 
Datum: 19:27 Mo 27.08.2007
Autor: Loddar

Hallo hurricane!


Da sieht doch schon ganz gut aus. Ich würde allerdings auch noch den "positiven Beweis" führen, indem Du die Eigenschaft der Punktsymmetrie $f(-x) \ = \ -f(x)$ für das Polynom mit ausschließlich ungeraden Exponenten führst:

$f(x) \ = \ [mm] a*x^3+c*x$ [/mm]


$f(-x) \ = \ ...$


Gruß
Loddar


Bezug
                
Bezug
Punktsymmetrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Mo 27.08.2007
Autor: hurricane666

Danke!

Freut mich zu hören, dass ich auf dem richtigen Wege bin!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]