www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikQuader mit max. Kantensumme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Diskrete Mathematik" - Quader mit max. Kantensumme
Quader mit max. Kantensumme < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quader mit max. Kantensumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Do 27.05.2010
Autor: theghostdog

Aufgabe
Gegeben ist ein Quader maximaler Summer der Kantenlänge bei gegeben Volumen.

a) Formulieren Sie die mathematische Aufgabe.
b) Stellen Sie die notwendigen Optimalitätsbedingungen auf.

Hallo zusammen,

ich hoffe ich bin hier im richtigen Forum, sonst bitte verschieben. Ich muß sagen ich weiß nicht so richtig, wie ich an diese Aufgabe ran gehen soll.

Ich weiß:
I) [mm] \mbox{V} [/mm] ist konstant
II) [mm] V = a_1 * a_2 * a_3 [/mm] mit $ [mm] a_i \in \{Kantenlaengen des Quaders \} [/mm] $
III) es soll gelten $ [mm] \sum_{k=1}^{3} a_i [/mm] = max$  mit [mm] $a_i \in \{Kantenlaengen~des~Quaders \}$ [/mm]

aus III folgt ja eigentlich, dass die Summe dann maximal ist, wenn $ [mm] \lim_{0 \to n } a_1 [/mm] = V$ und $ [mm] \lim_{n \to 0} a_i [/mm] = 0$ für $ i [mm] \in [/mm] {2,3} $

Das schreit für mich nach Integration, sehe aber im Moment wirklich nicht den Wald vor lauter Bäumen. Jemand einen Tip? Danke!




        
Bezug
Quader mit max. Kantensumme: Extremalproblem
Status: (Antwort) fertig Status 
Datum: 03:52 Sa 29.05.2010
Autor: Loddar

Hallo Theghostdog!


Hier ist nicht mit Integration vorzugehen, sondern mit Differentiation, da es sich um ein Extremalproblem mit Nebenbedingung handelt.


Im übrigen beträgt die Summe der Kantenlängen $k \ = \ [mm] 2*(a_1+a_2+a_3)$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Quader mit max. Kantensumme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Mo 31.05.2010
Autor: theghostdog

vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]