www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Quadratische Ergänzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Quadratische Ergänzung
Quadratische Ergänzung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Ergänzung: Nullstellenbestimmung
Status: (Frage) beantwortet Status 
Datum: 18:21 Sa 08.10.2011
Autor: dstny

Aufgabe
Bestimme die Nullstellen der Funktion f(x)=2x²-6x-4

Kurze Frage zum thema Quadratische Ergänzung..

Soweit verstehe ich es:

f(x)=-2x²-6x-4
-2x²-6x-4 = 0     | :(-2)
x² + 3x + 2 = 0   | - 2
x² + 3x     = -2

_________________

Jetzt geht es laut Matheheft folgendermaßen weiter:

x² + 3x + (3/2)² = -2 + (3/2)²  | In Klammer bringen
(x + 1,5)² = 0,25  | + - (Wurzel)  


1. Lösung
x+1,5 = -0,5  | -1,5
x = -2

2. Lösung
x+1,5 = 0,5
x = -1


Ich verstehe den Schritt "In Klammer bringen" nicht...
Also von:

x² + 3x + (3/2)² = -2 + (3/2)² --> nach
(x + 1,5)² = 0,25
nicht..

Wie lautet die Rechnung, wie ich da vorgehen muss?
Wieso ist das (3/2)² verschwunden..
bzw. wenn aus den (3/2)² die 1,5 werden - Wo bleiben dann die 3x?


Hoffe jemand hilft mir da..


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Sa 08.10.2011
Autor: abakus


> Bestimme die Nullstellen der Funktion f(x)=2x²-6x-4
>  Kurze Frage zum thema Quadratische Ergänzung..
>
> Soweit verstehe ich es:
>  
> f(x)=-2x²-6x-4
>  -2x²-6x-4 = 0     | :(-2)
>  x² + 3x + 2 = 0   | - 2
>  x² + 3x     = -2
>  
> _________________
>  
> Jetzt geht es laut Matheheft folgendermaßen weiter:
>  
> x² + 3x + (3/2)² = -2 + (3/2)²  | In Klammer bringen
>  (x + 1,5)² = 0,25  | + - (Wurzel)  
>
>
> 1. Lösung
>  x+1,5 = -0,5  | -1,5
>  x = -2
>  
> 2. Lösung
>  x+1,5 = 0,5
>  x = -1
>  
>
> Ich verstehe den Schritt "In Klammer bringen" nicht...
>  Also von:
>  
> x² + 3x + (3/2)² = -2 + (3/2)² --> nach
>  (x + 1,5)² = 0,25
>  nicht..
>
> Wie lautet die Rechnung, wie ich da vorgehen muss?
> Wieso ist das (3/2)² verschwunden..
> bzw. wenn aus den (3/2)² die 1,5 werden - Wo bleiben dann
> die 3x?

Hallo,
kennst du keine binomischen Formeln?
[mm] (x+1,5)^2 [/mm] ist doch gerade [mm] x^2+2*x*1,5 [/mm] + [mm] 1,5^2, [/mm]
also [mm] x^2+3x+1,5^2. [/mm]
Deine vermissten 3x stecken als doppeltes Produkt von x und 1,5 in dem ausmultiplizierten Term [mm] (x+1,5)^2. [/mm]
Gruß Abakus

>
>
> Hoffe jemand hilft mir da..
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Quadratische Ergänzung: Binomische Formel
Status: (Frage) beantwortet Status 
Datum: 18:38 Sa 08.10.2011
Autor: dstny

Könntest du mir das vielleicht ein bisschen einfacher klarmachen..
Für doofe wenns geht..

Also muss ich aus:
x² + 3x + (3/2)²
die binomische Formel bilden, die so lautet:
(x + 1,5)²




Bezug
                        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Sa 08.10.2011
Autor: abakus


> Könntest du mir das vielleicht ein bisschen einfacher
> klarmachen..
> Für doofe wenns geht..
>  
> Also muss ich aus:
>  x² + 3x + (3/2)²
> die binomische Formel bilden, die so lautet:
>  (x + 1,5)²

Im Prinzip ja, wenn es hier so einfach wäre.
Das Schwierige ist, dass du aus
[mm] x^2+3x [/mm]      = "irgendwas"
durch addieren eines geeigneten Terms (dass dieser Term [mm] 1,5^2 [/mm] ist weißt du ja noch nicht)
die Gleichung
[mm] (x+...)^2= [/mm] "irgendwas plus das auf beiden Seiten Addierte"

erhalten musst.
Da in der Mitte der binomischen Formel ein doppeltes Produkt vorkommt und dieses hier 3x werden soll, musst du als zweiten Summanden in der Klammer die Hälfte von 3, also 1,5 wählen.

Nun ist aber [mm] x^2+3x [/mm] nicht das selbe wie [mm] (x+1,5)^2, [/mm]
denn [mm] (x+1,5)^2 [/mm] ist [mm] x^2+3x\red{+1,5^2}. [/mm]
Deshalb musst du diesen fehlenden Summanden [mm] \red{+1,5^2} [/mm] zu [mm] x^2+3x [/mm] noch dazugeben. Das darfst du natürlich nicht nur auf der linken Seite der Gleichung machen (durch eine einseitige Veränderung würde sich die Lösung der Gleichung ändern), also musst du [mm] \red{+1,5^2} [/mm] auf beiden Seiten der Gleichung hinzufügen.
Gruß Abakus



>  
>
>  


Bezug
                                
Bezug
Quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Sa 08.10.2011
Autor: dstny

Aufgabe
Beispiel?

Kannst du mir vielleicht noch ein Beispiel mit zahlen geben?
Inklusive Lösungsweg?

Vielleicht hilft mir das noch ein bisschen mehr, das richtig zu verstehen..




Bezug
                                        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Sa 08.10.2011
Autor: Steffi21

Hallo, nehmen wir

[mm] x^{2}+10x+3 [/mm]

die Hälfte von 10 ist 5, das Quadrat von 5 ist 25

[mm] x^{2}+10x+3+22-22 [/mm]

[mm] =x^{2}+10x+25-22 [/mm]

damit sich der Term nicht verändert, ist 22 zu subtrahieren

aus [mm] x^{2}+10x+25 [/mm] wird [mm] (x+5)^{2} [/mm]

[mm] =(x+5)^{2}-22 [/mm]

du kannst immer für dich die Probe machen, versuche mal

(1) [mm] x^{2}-12x+7 [/mm]

(2) [mm] x^{2}+20x-15 [/mm]

Steffi



Bezug
                                                
Bezug
Quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Sa 08.10.2011
Autor: dstny

Jetzt bin ich komplett durcheinander..

Nehmen wir mal mein Beispiel aus meinem Heft:

f(x)=-2x²-6x-4

Dann den Funktionsterm " =0 setzen"

-2x²-6x-4=0 -> Jetzt muss es in die Normalform (oder?)|:(-2)
x²+3x+2=0 -> dann die 2 weg (oder?)| -2
x²+3x=-2

So dann steht in meinem Heft als "Anweisung" "Linke Seite zur binomischen Formel "quadratisch Ergänzen" (Zahl vor dem x halbieren quadrieren, auf beiden Seiten addieren"
Dann steht dort:
x²+3x+(3/2)²=-2x+(3/2)²

Also muss ich zu dem 3x noch (3/2)² schreiben.. soweit so gut.
Nächster Schritt wäre: "In Klammern bringen"
Also muss aus:
x²+3x+(3/2)²=-2+(3/2)²
(x+1,5)²=0,25
werden.
Da liegt mein Problem... Ich verstehe einfach nicht wie genau ich da vorgehen soll.
Das aus 2+(3/2)² = 0,25 werden, kann ich ja im Prinzip im Taschenrechner eintippen..
Aber wird dann wenn ich z.B statt "x²+3x+(3/2)²" z.B
"x²+4x+(4/2)" habe daraus -> (x+2)²


Wenn nein - Was würde dann aus x²+4x+(4/2)werden?


Bezug
                                                        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Sa 08.10.2011
Autor: MathePower

Hallo dstny,

[willkommenmr]

> Jetzt bin ich komplett durcheinander..
>
> Nehmen wir mal mein Beispiel aus meinem Heft:
>
> f(x)=-2x²-6x-4
>  
> Dann den Funktionsterm " =0 setzen"
>  
> -2x²-6x-4=0 -> Jetzt muss es in die Normalform
> (oder?)|:(-2)
>  x²+3x+2=0 -> dann die 2 weg (oder?)| -2

>  x²+3x=-2
>  
> So dann steht in meinem Heft als "Anweisung" "Linke Seite
> zur binomischen Formel "quadratisch Ergänzen" (Zahl vor
> dem x halbieren quadrieren, auf beiden Seiten addieren"
>  Dann steht dort:
> x²+3x+(3/2)²=-2x+(3/2)²
>  
> Also muss ich zu dem 3x noch (3/2)² schreiben.. soweit so
> gut.
> Nächster Schritt wäre: "In Klammern bringen"
> Also muss aus:
>  x²+3x+(3/2)²=-2+(3/2)²
> (x+1,5)²=0,25
>  werden.
>  Da liegt mein Problem... Ich verstehe einfach nicht wie
> genau ich da vorgehen soll.
> Das aus 2+(3/2)² = 0,25 werden, kann ich ja im Prinzip im
> Taschenrechner eintippen..
> Aber wird dann wenn ich z.B statt "x²+3x+(3/2)²" z.B
> "x²+4x+(4/2)" habe daraus -> (x+2)²
>  
>


Wenn  Du

[mm]x^{2}+4x+\left(\bruch{4}{2}\right)^{2}[/mm]

hast, dann wird daraus

[mm]\left(x+2\right)^{2}[/mm]


> Wenn nein - Was würde dann aus x²+4x+(4/2)werden?
>


Gruss
MathePower

Bezug
                                                        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Sa 08.10.2011
Autor: M.Rex

Hallo

Dann mal ganz ausführlich:

f(x)=-2x²-6x-4
die -2 aus den ersten beiden Summanden ausklammern, ergibt:
f(x)=-2(x²+3x)-4
In der Klammer stehen nun die ersten beiden Summanden der (hier ersten) binomischen Formel - rückwärts angewandt.
Also ergänzen wir ein (3/2)², das ist genau der Term, der für die Binomische Formel fehlt. Um die Funktion aber nich zu verändern, subtrahieren wir im selben Schritt wieder diese (3/2)
Also:
Das ergibt:
f(x)=-2(x²+3x+1,5²-1,5²)-4
Jetzt kommen wir die ersten drei Summanden per binomischer Formel verarbeiten, also:
f(x)=-2((x+1,5)²-1,5²)-4
Die 1,5² ausrechnen:
f(x)=-2((x+1,5)²-2,25)-4
Jetzt noch Klammern lösen:
f(x)=-2(x+1,5)²+5,5-4
Und noch einmal zusammenfassen:
f(x)=-2(x+1,5)²+1,5

Das hier nun die 1,5 doppelt auftaucht, ist Zufall.

Marius


Bezug
        
Bezug
Quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:43 So 09.10.2011
Autor: dstny

Erst mal ein riesiges DANKE an alle die geantwortet haben :)

Nur noch mal zur sicherheit.. Das ist also jetzt richtig:



f(x) = x² + 6x - 40
x² + 6x - 40 = 0    |+40
x² + 6x      = 40
x² + 6x + (6/2)² = 40 + (6/2)
(x + 3)² = 49       |+/- [Wurzel]

1. Lösung: [x1]
x + 3 = -7 | -3
x = -10

2. Lösung: [x2]
x + 3 = (+)7 | -3
x = (+)4





Bezug
                
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:50 So 09.10.2011
Autor: ullim

Hi,

> Erst mal ein riesiges DANKE an alle die geantwortet haben :)
>
> Nur noch mal zur sicherheit.. Das ist also jetzt richtig:
>  
> f(x) = x² + 6x - 40
>  x² + 6x - 40 = 0    |+40
>  x² + 6x      = 40
>  x² + 6x + (6/2)² = 40 + (6/2)

Bis auf diese Stelle, da muss es heissen ... = [mm] 40+(6/2)^2 [/mm]

>  (x + 3)² = 49       |+/- [Wurzel]
>  
> 1. Lösung: [x1]
>  x + 3 = -7 | -3
>  x = -10
>  
> 2. Lösung: [x2]
>  x + 3 = (+)7 | -3
>  x = (+)4


Das Ergerbnis kannst Du mittels Probe auch bestätigen

1. Lösung
[mm] 10^2-6*10-40=0 [/mm]

2. Lösung
16+6*4-40=0

Stimmt also alles.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]