www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenQuadratische Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Quadratische Funktionen
Quadratische Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Funktionen: Funktionsgleichung bestimmen
Status: (Frage) beantwortet Status 
Datum: 10:11 Sa 01.10.2011
Autor: Nicky658

Aufgabe
Gegeben ist folgendes Koordinatensystem. Bestimmen Sie die Funktionsgleichung.

Hallo, ich habe ein Problem bei der Bestimmung von Funktionsgleichungen bei Parabeln. Ich weiss einfach nicht wie ich das quadratische Glied a bestimmen kann. In meinem Beispiel kann man es zwar ablesen aber was mache ich wenn es nicht so einfach Zahlen sind?

Hier ein Link zur Parabel als Bild:

http://img825.imageshack.us/img825/2918/aufgabe.png

        
Bezug
Quadratische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 Sa 01.10.2011
Autor: M.Rex

Hallo

Trage den Scheitelpunkt S(d/e) (hier d=2, e=2) in die Scheitelpunktform ein, also:

f(x)=a(x-d)²+3, also hier f(x)=a(x-2)²+2

nun nimm dir eine der Nullstellen (oder einen anderen gut ablesbare Punkt) her, hier beispielsweise P(3/0).

Also soll gelte:

f(3)=0, also hier:

0=a(3-x)²+2

Daraus bestimme nun a

Marius


Bezug
                
Bezug
Quadratische Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 Sa 01.10.2011
Autor: Nicky658

Hmm also irgendwie komm ich auf ein falsches Ergebnis... (glaube ich) :)

f(x) = a (x - d²) + b
0 = a (1 - 2²) + 2
0 = a (-3) + 2 | -2
-2 = a (-3) | : (-3)
0,66 = a

Bezug
                        
Bezug
Quadratische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Sa 01.10.2011
Autor: M.Rex

Hallo

Du quadrierst an der falschen Stelle:
Es gilt:

(3-2)²=1²=1

Also:
0=a(3-2)²+2
<=> -2=a

Marius


Bezug
                        
Bezug
Quadratische Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Sa 01.10.2011
Autor: Nicky658

Ok, scheinbar hab ich die Scheitelpunktform falsch abgeschrieben.

f(x) = a (x - d)² + b
0 = a (1 - 2)² + 2
0 = a (1) + 2 | -2
-2 = a (1) | : 1
-2 = a

bzw.

f(x) = a (x - d)² + b
0 = a (3 - 2)² + 2
0 = a * 1 + 2 | -2
-2 = a  * 1 | : 1
-2 = a


Also lautet die Scheitelpunktform der Parabel: f(x) = -2 (x - 2)² + 2
Ist das korrekt ?

Bezug
                                
Bezug
Quadratische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Sa 01.10.2011
Autor: M.Rex


> Ok, scheinbar hab ich die Scheitelpunktform falsch
> abgeschrieben.
>  
> f(x) = a (x - d)² + b
>  0 = a (1 - 2)² + 2
>  0 = a (1) + 2 | -2
>  -2 = a (1) | : 1
>  -2 = a
>
> bzw.
>  
> f(x) = a (x - d)² + b
>  0 = a (3 - 2)² + 2
>  0 = a * 1 + 2 | -2
>  -2 = a  * 1 | : 1
>  -2 = a
>
>
> Also lautet die Scheitelpunktform der Parabel: f(x) = -2 (x
> - 2)² + 2
> Ist das korrekt ?

Ja, alles bestens

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]