www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenQuadratische Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Quadratische Gleichung
Quadratische Gleichung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Mo 20.12.2010
Autor: Theoretix

Aufgabe
Lösen Sie für z [mm] \in \IC [/mm] die quadratische Gleichung:

[mm] z^2+(2i-3)z+5-i=0 [/mm]

und machen Sie sich dabei klar, wie man aus einer komplexen Zahl die Quadratwurzel zieht.

Hallo zusammen,

darf man hier als Ansatz wie gewohnt die „Mitternachtsformel“ für quadratische Gleichungen anwenden, also die Gleichung wie eine reelle behandeln?

Falls ja, hätte ich doch:

[mm] z_{1,2}=\bruch{-(2i-3)\pm\wurzel{(2i-3)^{2}-4*(5-i)}}{2} [/mm]

(?)

Das nächste Problem wäre nun, wie man aus einer komplexen Zahl die Wurzel zieht?
Muss man eine andere Darstellung wie z.B. [mm] z=e^{i\phi} [/mm] wählen? habe noch keinen brauchbaren Ansatz und wäre für Hilfe dankbar!

Liebe Grüße

        
Bezug
Quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Mo 20.12.2010
Autor: qsxqsx


> Lösen Sie für z [mm]\in \IC[/mm] die quadratische Gleichung:
>  
> [mm]z^2+(2i-3)z+5-i=0[/mm]
>  
> und machen Sie sich dabei klar, wie man aus einer komplexen
> Zahl die Quadratwurzel zieht.
>  Hallo zusammen,
>  
> darf man hier als Ansatz wie gewohnt die
> „Mitternachtsformel“ für quadratische Gleichungen
> anwenden, also die Gleichung wie eine reelle behandeln?

Ja.

>  
> Falls ja, hätte ich doch:
>  
> [mm]z_{1,2}=\bruch{-(2i-3)\pm\wurzel{(2i-3)^{2}-4*(5-i)}}{2}[/mm]
>  
> (?)
>  
> Das nächste Problem wäre nun, wie man aus einer komplexen
> Zahl die Wurzel zieht?
>  Muss man eine andere Darstellung wie z.B. [mm]z=e^{i\phi}[/mm]
> wählen? habe noch keinen brauchbaren Ansatz und wäre für
> Hilfe dankbar!

Das siehst du richtig. Zuerst solltest du aber den Term unter der Wurzel mal zuerst vereinfachen, und zwar so dass du nur noch [mm] \wurzel{a + ib} [/mm] hast.
Dann kannst du diese Komplexe Zahl a + ib versuchen in Polarform zu schreiben.

Gruss

>  
> Liebe Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]