www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenQuadratische Gleichung in C
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "komplexe Zahlen" - Quadratische Gleichung in C
Quadratische Gleichung in C < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichung in C: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 Do 17.10.2013
Autor: drahmas

Aufgabe
[mm] x^2+(1+i)x+i=0 [/mm]

Hallo,

ich  habe bereits den Lösungsweg der o.g. Aufgabe.
Leider sind mir jedoch einige Dinge unklar und ich hoffe, jemand kann mir weiterhelfen.

In die pq-Formel eingesetzt erhält man:

[mm] x_1_,_2=-\bruch{1+i}{2}\pm\wurzel{\bruch{(1+i)^2}{4}}-i [/mm]

=

[mm] x_1_,_2=-\bruch{1+i}{2}\pm\wurzel{\bruch{1+2i+i^2-4i}{4}} [/mm]

Hier meine erste Frage: Wie kommt es, dass [mm] (1+i^2)-i [/mm] zu [mm] 1+2i+i^2-4i [/mm] wird?
Wenn ich [mm] (1+i)^2 [/mm] rechne, dann erhalte ich "0", da [mm] i^2 [/mm] ja (-1) ist und 1-1 ergibt "0". Und wo kommen die (-4i) plötzlich her?

Weiter:

[mm] x_1_,_2=-\bruch{1+i}{2}\pm\wurzel{\bruch{1-2i+i^2}{4}} [/mm]

=

[mm] x_1_,_2=-\bruch{1+i}{2}\pm\wurzel{\bruch{(1-i)^2}{4}} [/mm]

Und zur nächsten Frage: Warum wird das alles nun auf einmal zu [mm] (1-i)^2? [/mm]

Weiter:

[mm] x_1_,_2=-\bruch{1+i}{2}\pm\bruch{1-i}{2} [/mm]


Besten Dank

        
Bezug
Quadratische Gleichung in C: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Do 17.10.2013
Autor: fred97


> [mm]x^2+(1+i)x+i=0[/mm]
>  Hallo,
>  
> ich  habe bereits den Lösungsweg der o.g. Aufgabe.
>  Leider sind mir jedoch einige Dinge unklar und ich hoffe,
> jemand kann mir weiterhelfen.
>  
> In die pq-Formel eingesetzt erhält man:
>  
> [mm]x_1_,_2=-\bruch{1+i}{2}\pm\wurzel{\bruch{(1+i)^2}{4}}-i[/mm]
>  
> =
>  
> [mm]x_1_,_2=-\bruch{1+i}{2}\pm\wurzel{\bruch{1+2i+i^2-4i}{4}}[/mm]
>  
> Hier meine erste Frage: Wie kommt es, dass [mm](1+i^2)-i[/mm] zu
> [mm]1+2i+i^2-4i[/mm] wird?

[mm](1+i^2)-i[/mm] wird nicht zu [mm]1+2i+i^2-4i[/mm]  !!

Sondern:

[mm] \bruch{(1+i)^2}{4}-i=\bruch{(1+i)^2-4i}{4}= [/mm] .....

>  Wenn ich [mm](1+i)^2[/mm] rechne, dann erhalte ich "0", da [mm]i^2[/mm] ja
> (-1) ist und 1-1 ergibt "0". Und wo kommen die (-4i)
> plötzlich her?

Ich schaue in einen Abgrund !

Bei Dir ist wohl [mm] (1+i)^2=1^2+i^2=1-1=0. [/mm] Nach dem Motto: ich weiss Sachen, die nicht stimmen:

      [mm] (a+b)^2=a^2+b^2. [/mm]

Mann , mann, Binomi !:

      [mm] (a+b)^2=a^2+2ab+b^2. [/mm]

>  
> Weiter:
>  
> [mm]x_1_,_2=-\bruch{1+i}{2}\pm\wurzel{\bruch{1-2i+i^2}{4}}[/mm]
>  
> =
>  
> [mm]x_1_,_2=-\bruch{1+i}{2}\pm\wurzel{\bruch{(1-i)^2}{4}}[/mm]
>  
> Und zur nächsten Frage: Warum wird das alles nun auf
> einmal zu [mm](1-i)^2?[/mm]

Wieder Binomi:

      [mm] (1-i)^2=1^2-2i+i^2=1-2i+i^2 [/mm]

Übrigends ist [mm] (1-i)^2=1-2i-1=-2i [/mm]

FRED

>  
> Weiter:
>  
> [mm]x_1_,_2=-\bruch{1+i}{2}\pm\bruch{1-i}{2}[/mm]
>  
>
> Besten Dank


Bezug
                
Bezug
Quadratische Gleichung in C: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Do 17.10.2013
Autor: drahmas

[anbet] Ja, Binomische Formel. Stimmt. Bin ich irgendwie nicht drauf gekommen, aber das ergibt Sinn, natürlich.

Danke [ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]