www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Quadratische Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Quadratische Gleichungen
Quadratische Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichungen: Aufgabenblatt
Status: (Frage) beantwortet Status 
Datum: 15:45 Do 18.11.2010
Autor: Legionista

Aufgabe
(2x+3)²-8x=(3x+2)(x+2)+25

Hallo,

ich soll als Hausaufgabe diese Aufgabe entweder mit der quadratischen Ergänzung oder der pq-Formel lösen. Ich hatte schon einen Ansatz:


(2x+3)²-8x=(3x+2)(x+2)+25

2x²+9-8x=3x²+6x+2x+4+25


Doch wie gehts nun weiter?

Vielen Dank! Gruß,
Aaron

        
Bezug
Quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Do 18.11.2010
Autor: fred97


> (2x+3)²-8x=(3x+2)(x+2)+25
>  Hallo,
>  
> ich soll als Hausaufgabe diese Aufgabe entweder mit der
> quadratischen Ergänzung oder der pq-Formel lösen. Ich
> hatte schon einen Ansatz:
>  
>
> (2x+3)²-8x=(3x+2)(x+2)+25
>  
> 2x²+9-8x=3x²+6x+2x+4+25

Hast Du schon mal etwas von der binomischen Formel gehört ?

Es ist [mm] (2x+3)^2 [/mm] = [mm] 4x^2+12x+9 [/mm]  und nicht = [mm] 2x^2+9 [/mm]

Du erhälst also:

                 [mm] 4x^2+12x+9 [/mm] -8x= [mm] 3x^2+6x+2x+4+25 [/mm]

oder

                [mm] 4x^2+4x+9= 3x^2+8x+29 [/mm]

Bring alles was rechts steht auf die linke Seite:

                [mm] 4x^2-3x^2+4x-8x+9-29=0 [/mm]

Jetzt Du

FRED

>  
>
> Doch wie gehts nun weiter?
>  
> Vielen Dank! Gruß,
>  Aaron


Bezug
                
Bezug
Quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Do 18.11.2010
Autor: Legionista

Danke. Jedoch stellt sich mir diese Frage:

$ [mm] 4x^2+12x+9 [/mm] $ -8x= $ [mm] 3x^2+6x+2x+4+25 [/mm] $

Wie kommst du auf die 12x?

Ich vermute hier muss die Formel a²+2ab+b² angewendet werden. Aber wie komm ich auf 12?

Gruß,

Aaron

Bezug
                        
Bezug
Quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Do 18.11.2010
Autor: schachuzipus

Hallo Legionista,

> Danke. Jedoch stellt sich mir diese Frage:
>
> [mm]4x^2+12x+9[/mm] -8x= [mm]3x^2+6x+2x+4+25[/mm]
>
> Wie kommst du auf die 12x?
>
> Ich vermute hier muss die Formel a²+2ab+b² angewendet
> werden.

Da vermutest du ganz richtig!

[mm](a+b)^2=a^2+2ab+b^2[/mm]

> Aber wie komm ich auf 12?

Nun, hier musst du [mm](\red{2x}+\blue{3})^2[/mm] bestimmen, also [mm]a=\red{2x}[/mm] und [mm]b=\blue{3}[/mm]

Setze das in die Formel ein ...

>
> Gruß,
>
> Aaron

Gruß

schachuzipus

Bezug
                                
Bezug
Quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Do 18.11.2010
Autor: Legionista

Hallo,


ich komme leider mit deiner Erklärung nicht ganz klar, jedoch kann ich mich an eine Erklärung erinneren, die in etwa so ging:

Man Hat 2ab und da mein x=a ist fällt a weg und es bleibt 2b und dann soll man durch 2 rechnen, und dan hat man b raus. Nur leider weiss ich nicht was ich für b einsetzen soll. Die 9?

Bezug
                                        
Bezug
Quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Do 18.11.2010
Autor: schachuzipus

Hallo nochmal,

> Hallo,
>
>
> ich komme leider mit deiner Erklärung nicht ganz klar,

dabei habe ich es extra farbig gemacht - und bunt ...

> jedoch kann ich mich an eine Erklärung erinneren, die in
> etwa so ging:
>
> Man Hat 2ab und da mein x=a ist fällt a weg und es bleibt
> 2b

Ich versteht nur Bahnhof [ohwell]

[help]

> und dann soll man durch 2 rechnen, und dan hat man b
> raus. Nur leider weiss ich nicht was ich für b einsetzen
> soll. Die 9?

Nein, es ist doch [mm](\red{a}+\blue{b})^2=\red{a}^2+2\red{a}\blue{b}+\blue{b}^2[/mm]

Also [mm](\red{2x}+\blue{3})^2=\red{(2x)}^2+2\cdot{}\red{2x}\cdot{}\blue{3}+\blue{3}^2=4x^2+12x+9[/mm] [idee]

Gruß

schachuzipus


Bezug
                                                
Bezug
Quadratische Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 Do 18.11.2010
Autor: Legionista

Vielen Dank für die Hilfe!

Bezug
                                                
Bezug
Quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Do 18.11.2010
Autor: Legionista

Hallo,

habe als Lösung [mm] 2+2\wurzel{6} [/mm] raus! Und dann noch einmal nur mit einem minus vor dem [mm] 2\wurzel{6} [/mm] :)

Jedoch kommt nun diese Aufgabe dran:

(x+2)²+(x+3)²=5

Zuerst wollte ich die dritte binomische Formel anwenden, jedoch störte mich das ², da ich nicht wusste was ich dann machen sollte. Aber alles in der Wurzel ² nehmen ging auch nicht, da ich nicht wusste, wie ich das mit dem 2ab machen soll, wenn keine Zahl vor dem x steht?

Gruß,

Aaron

Bezug
                                                        
Bezug
Quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Do 18.11.2010
Autor: ullim

Hi,


> (x+2)²+(x+3)²=5

einfach ausmultiplizieren und pq Formel anwenden.

[mm] x^2+4x+4+x^2+6x+9=5 \gdw x^2+5x+4=0 [/mm]


Bezug
                                                                
Bezug
Quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Do 18.11.2010
Autor: Legionista

Hallo, danke dir, aber ich verstehe leider nicht wie Sie auf die 4x bzw die 6x kommen.

Gruß,

Aaron

Bezug
                                                                        
Bezug
Quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Do 18.11.2010
Autor: schachuzipus

Hallo nochmal,

> Hallo, danke dir, aber ich verstehe leider nicht wie Sie
> auf die 4x bzw die 6x kommen.

Ich habe dir oben schon einmal ein Binom farbig ausgerechnet.

Rechne nun hier vor, wie du es in diesem 2ten Bsp. ausrechnen würdest. Worauf kommst du?

Poste deine ausführliche Rechnung, es geht analog zu dem farbig vorgemachten Beispiel!

Also ran jetzt!


>
> Gruß,
>
> Aaron

LG

schachuzipus


Bezug
                                                                                
Bezug
Quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Do 18.11.2010
Autor: Legionista

Hallo,

es fällt mir schwer es selber zu erklären, aber ich werde es versuchen:

$ [mm] (\red{a}+\blue{b})^2=\red{a}^2+2\red{a}\blue{b}+\blue{b}^2 [/mm] $ = Normalform

Und meine blaue Zahl ist hier ja die 2 und meine Rote das X deshalb kommt raus 4x und beim anderen ist es die 3, die meine blaue Zahl ist und das rote ist wieder mein X, eshalb 6x rauskommt. Aber wie kann ich, da ich ja jetzt 2mal ein x² habe es auf nur eins reduzieren?

Gruß,

Aaron

Bezug
                                                                                        
Bezug
Quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Do 18.11.2010
Autor: schachuzipus

Hallo nochmal,


> Hallo,
>  
> es fällt mir schwer es selber zu erklären, aber ich werde
> es versuchen:
>  
> [mm](\red{a}+\blue{b})^2=\red{a}^2+2\red{a}\blue{b}+\blue{b}^2[/mm]
> = Normalform
>
> Und meine blaue Zahl ist hier ja die 2 und meine Rote das X
> deshalb kommt raus 4x und beim anderen ist es die 3, die
> meine blaue Zahl ist und das rote ist wieder mein X, eshalb
> 6x rauskommt. Aber wie kann ich, da ich ja jetzt 2mal ein
> x² habe es auf nur eins reduzieren?

Anstatt uns mit solchen Bröcken an Infos zu füttern, wäre es besser, du würdest die Gleichung, die du rausbekommen hast, mal konkret posten!

Wie dem auch sei, klammere dann 2 aus oder teile die gesamte Gleichung durch 2, dann hast du [mm]x^2[/mm] dastehen.

Das sind aber doch keine Wunderrechnungen hier ...

Das solltest du wirklich seit dem Kindergarten wissen ;-)

Gruß

schachuzipus

>  
> Gruß,
>  
> Aaron


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]