www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationQuadratische Spline
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Interpolation und Approximation" - Quadratische Spline
Quadratische Spline < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Spline: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:33 Fr 06.05.2005
Autor: Angelika_we

hi, komme bei dieser aufgabe nicht weiter, wer kann mir helfen?

bewisen sie:zu einer beliebigen zerlegung [mm] \Delta_{n} [/mm] des intervalls[a,b]
[mm] a=x_{0} gibt es genau eine funktion mit folgenden Eigenschaften:
[mm] s\in C^{1}[a,b] [/mm]
s [mm] |_{[x_{i},x_{i+1}]} \in \produkt_{2} [/mm]
s( [mm] \bruch{x_{i}+x_{i+1}}{2})=y_{i+ \bruch{1}{2}}, [/mm] i=0,1,...,n-1
[mm] s'(x_{0}= \alpha), s'(x_{n}= \beta) [/mm]

wobei die Werte  [mm] \alpha, \beta, y_{i+ \bruch{1}{2}} [/mm] beliebig vorgebbar sind.

ich komme einfach nicht drauf, vielleicht kann mir ja jemand helfen!

danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Quadratische Spline: Gleichungssystem aufstellen
Status: (Antwort) fertig Status 
Datum: 07:05 So 08.05.2005
Autor: mathemaduenn

Hallo Angelika_we,
Du hast also stückweise Polynome 2. Grades. Diese sollen auf dem Gesamtintervall stetig differenzierbar sein.
Also muß an den Schnittstellen was übereinstimmen?
Ein Polynom 2.Grades ist ja parametrisierbar(z.B. [mm] ax^2+bx+c). [/mm]
Jetzt ist die Frage ob Du aus den gegebenen Information diese Parameter eindeutig ausrechnen kannst.
gruß
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]