www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenQuasikonvexität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Quasikonvexität
Quasikonvexität < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quasikonvexität: Allgemeine Frage
Status: (Frage) beantwortet Status 
Datum: 07:27 Mo 27.04.2015
Autor: Britta82

Hi,

ich habe eine Frage zur Quasikonvexität: Vererbt die sich? Sind also Vereinigungen quasikonvexer Funktionen auch quasikonvex?

Besten Dank und viele Grüße,
Britta

        
Bezug
Quasikonvexität: Antwort
Status: (Antwort) fertig Status 
Datum: 07:37 Mo 27.04.2015
Autor: fred97


> Hi,
>  
> ich habe eine Frage zur Quasikonvexität: Vererbt die sich?
> Sind also Vereinigungen quasikonvexer Funktionen auch
> quasikonvex?

Was verstehst Du denn unter der Verinigung von Funktionen ???

FRED

>  
> Besten Dank und viele Grüße,
>  Britta


Bezug
                
Bezug
Quasikonvexität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:39 Mo 27.04.2015
Autor: Britta82

Ich meine Verkettung, oder die Summe, jede Art zwei Funktionen miteinander in Verbindung zu bringen.

Ich weiß, dass die Summe konvexer Funktionen wieder konvex ist, aber bspw. für die Log-Funktion habe ich nichtmal Konvexität, aber quasikonvexität. Die Frage ist also, wenn ich den Logarithmus mit einer anderen (quasi)konvexen Funktion verbinde, erhalte ich mir dann die Quasikonvexität?

Besten Dank
Britta

Bezug
                        
Bezug
Quasikonvexität: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mo 27.04.2015
Autor: fred97


> Ich meine Verkettung, oder die Summe, jede Art zwei
> Funktionen miteinander in Verbindung zu bringen.
>  
> Ich weiß, dass die Summe konvexer Funktionen wieder konvex
> ist, aber bspw. für die Log-Funktion habe ich nichtmal
> Konvexität, aber quasikonvexität. Die Frage ist also,
> wenn ich den Logarithmus mit einer anderen (quasi)konvexen
> Funktion verbinde, erhalte ich mir dann die
> Quasikonvexität?
>  
> Besten Dank
>  Britta


Ist K eine konvexe Teilmenge eines reellen Vektorraumes und $f:K [mm] \to \IR$ [/mm] eine Funktion, so heißt f quasikonvex, wenn für jedes a [mm] \in \IR [/mm] die Menge


      [mm] Q_{a}(f):=\{x \in K:f(x)\le a\} [/mm]

konvex ist.

Ist nun $f(K) [mm] \subseteq [/mm] (0, [mm] \infty)$, [/mm] so ist [mm] $g(x):=\ln [/mm] (fx))$ auf K wohldefiniert. Ist dann a [mm] \in \IR, [/mm] so rechne nach:


      [mm] Q_{a}(g)= Q_{e^a}(f). [/mm]

Ist f also quasikonvex, was folgt dann über g ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]