www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikQuellstärke Elektrodynamik
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "HochschulPhysik" - Quellstärke Elektrodynamik
Quellstärke Elektrodynamik < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quellstärke Elektrodynamik: Ansatz
Status: (Frage) beantwortet Status 
Datum: 10:42 Do 27.10.2011
Autor: Levit

Aufgabe
Gegeben sind die Felder [mm] \vec F_1 (\vec r)=C \cdot \vec {n_r} \cdot r^{-k} [/mm] und [mm] \vec F_2 (\vec r)=C\cdot \vec{e_z} \times \bruch {\vec {n_r}}{r^m} [/mm] mit [mm] C=const., k\ne 2, m\ne 1 [/mm], dem Einheitsvektor [mm] \vec {n_r} [/mm] in Richtung [mm] \vec r [/mm].

a) Berechnen Sie die Quellstärke [mm] \int \vec{F_i}\,d\vec f [/mm] durch die Oberfläche einer Kugel mit dem Radius R und dem Mittelpunkt im Koordinatenursprung.
Hinweis: Nutzen sie Kugelkoordinaten

b) Berechnen Sie die Wirbelstärke [mm] \int \vec{F_i}\,d\vec r [/mm] auf den Umfang eines Kreises in der x-y-Ebene, dem Radius R und dem Mittelpunkt im Koordinatenursprung.
Hinweis: Nutzen sie Zylinderkoordinaten

Wie ist denn der Ansatz zur Berechnung dieser Integrale? Dabei sind es übrigens geschlossene Integrale, wusste nur nicht wie ich die hier darstellen kann.

Bei Teilaufgabe b würde ich das Integral der Rotation von F nach dA berechnen.
Aber was in Teilaufgabe a?

Vielleicht kann mir jemand behilflich sein. Ich möchte auch gar keine Lösungen haben, nur halt ein paar Tipps, wie ich loslegen kann.

Vielen Dank schon mal =)

        
Bezug
Quellstärke Elektrodynamik: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Do 27.10.2011
Autor: Event_Horizon

Hallo!

Ganz allgemein:


Wenn du eine Funktion f hast, so lautet das Integral über ein Volumen...


... in karthesischen Koordinaten:

[mm] $\int_{x=x_1}^{x=x_2}\int_{y=y_1}^{y=y_2}\int_{z=z_1}^{z=z_2} f(x,y,z)\,dx\,dy\,dz$ [/mm]


... in Zylinderkoordinaten:

[mm] $\int_{r=r_1}^{r=r_2}\int_{\phi=\phi_1}^{\phi=\phi_2}\int_{z=z_1}^{z=z_2} f(r,\phi,z)\red{*r}\,dr\,d\phi\,dz$ [/mm]

Der Winkel [mm] \phi [/mm] wird dabei normalerweise von 0 bis [mm] 2\pi [/mm] integriert.


... in Kugelkoordinaten: Koordinaten:

[mm] $\int_{r=r_1}^{r=r_2}\int_{\phi=\phi_1}^{\phi=\phi_2}\int_{\theta=\theta}^{\theta=\theta_2} f(r,\phi,\theta)\red{*r^2*\sin(\theta)}\,dr\,d\phi\,d\theta$ [/mm]

Über [mm] \phi [/mm] wird wie oben integriert, über [mm] \theta [/mm] von [mm] -\frac{\pi}{2} [/mm] bis [mm] +\frac{\pi}{2} [/mm] , wenn es um eine vollständige Kugel geht.


Du möchtest nur über eine Kugeloberfläche integrieren, deshalb integrierst du NICHT über r, sondern läßt es einfach konstant: r=R


Bezug
                
Bezug
Quellstärke Elektrodynamik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Do 27.10.2011
Autor: Levit

Ich hatte jetzt überlegt, ob ich nicht mit den Sätzen von Stokes und Gauß weiterkomme. Dann könnte ich einfach die Divergenz des Feldes über dem Volumen berechnen. Dann habe ich nachher ein Integral der Summe der jeweiligen Ableitungen des Feldes über dem Volumen. Und dann jeweils das Integral einmal nach x, y, z, bzw den entsprechenden Kugel/Zylinderkoordinaten.
Nur was sind dann meine Grenzen? Denn dann integriere ich ja doch über r.

Bezug
                        
Bezug
Quellstärke Elektrodynamik: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Fr 28.10.2011
Autor: leduart

Hallo
berechne doch mal die skalarprodukte, die da vorkommen Fdf und Fdr
dann siehst du dass es am einfachsten ist das was da steht auszurechnen!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]