Quotientenkriterium - Aufgabe < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:22 Fr 01.04.2011 | Autor: | zoj |
Aufgabe | Ich soll untersuchen, ob die Reihe:
[mm] \summe_{n=1}^{\infty} a_{n} [/mm] ; [mm] a_{n}=\produkt_{i=1}^{n}\bruch{i}{2i-1} [/mm]
(ggf. absolut) konvergiert. |
Hier habe ich das Quotietenkriterium angewandt:
[mm] \bruch{a_{n+1}}{a_{n}} [/mm] = [mm] \bruch{n+1}{2(n+1)-1}*\bruch{2n-1}{n}
[/mm]
= [mm] \bruch{(n+1)(2n-1)}{(2n+1)n}
[/mm]
= [mm] \bruch{n+1}{n}
[/mm]
[mm] \limes_{n\rightarrow\infty} [/mm] = 1.
Bei mir kommt eine 1 raus, d.h. ich kann keine Aussage über die Konvergenz bzw. die Divergenz der Folge machen.
In der Musterlösung hat man die Aufgabe anders gelöst:
[mm] \bruch{a_{n+1}}{a_{n}} [/mm] = [mm] \bruch{n+1}{2(n+1)-1} [/mm] = [mm] \bruch{n+1}{2n}
[/mm]
[mm] \limes_{n\rightarrow\infty} [/mm] = [mm] \bruch{1}{2}.
[/mm]
=> Die Reihe ist asolut konvergent.
Aber fehlt in der Musterlösung nicht ein Teil des Quotientenkriteriums?
|
|
|
|
Hallo zoj,
> Ich soll untersuchen, ob die Reihe:
> [mm]\summe_{n=1}^{\infty} a_{n}[/mm] ;
> [mm]a_{n}=\produkt_{i=1}^{n}\bruch{i}{2i-1}[/mm]
> (ggf. absolut) konvergiert.
> Hier habe ich das Quotietenkriterium angewandt:
>
> [mm]\bruch{a_{n+1}}{a_{n}}[/mm] =
> [mm]\bruch{n+1}{2(n+1)-1}*\bruch{2n-1}{n}[/mm]
[mm]\frac{a_{n+1}}{a_n}=\frac{\prod\limits_{i=1}^{n+1}\frac{i}{2i-1}}{\prod\limits_{i=1}^n\frac{i}{2i-1}}[/mm]
Und da kürzen sich doch in den Produkten alle Faktoren weg bis auf den für [mm]i=n+1[/mm] im Zähler, also
[mm]\frac{a_{n+1}}{a_n}=\frac{n+1}{2(n+1)-1}[/mm] und weiter wie in der Musterlösung ...
> = [mm]\bruch{(n+1)(2n-1)}{(2n+1)n}[/mm]
> = [mm]\bruch{n+1}{n}[/mm]
> [mm]\limes_{n\rightarrow\infty}[/mm] = 1.
> Bei mir kommt eine 1 raus, d.h. ich kann keine Aussage
> über die Konvergenz bzw. die Divergenz der Folge machen.
>
> In der Musterlösung hat man die Aufgabe anders gelöst:
> [mm]\bruch{a_{n+1}}{a_{n}}[/mm] = [mm]\bruch{n+1}{2(n+1)-1}[/mm] =
> [mm]\bruch{n+1}{2n}[/mm]
> [mm]\limes_{n\rightarrow\infty}[/mm] = [mm]\bruch{1}{2}.[/mm]
> => Die Reihe ist asolut konvergent.
>
> Aber fehlt in der Musterlösung nicht ein Teil des
> Quotientenkriteriums?
Nein
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:54 Fr 01.04.2011 | Autor: | zoj |
Ahh! Stimmt!
|
|
|
|