www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeQuotientenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Quotientenraum
Quotientenraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:15 Di 28.02.2012
Autor: Lu-

Aufgabe
Für einen Teilraum W eines Vektorraums V zeige V/W [mm] =\{0\} [/mm] genau dann gilt V=W


Vorraussetung: V/W [mm] =\{0\} [/mm]

Äquivalenzklasse von v: [mm] [v]=\{ v \in V:v-v' \in W\} [/mm]
Ich komme da nicht ganz auf einen Ansatz.
die Aufgabe klingt logisch, aber ich kann es nicht beweisen!

        
Bezug
Quotientenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 07:18 Di 28.02.2012
Autor: fred97


> Für einen Teilraum W eines Vektorraums V zeige V/W [mm]=\{0\}[/mm]
> genau dann gilt V=W
>  Vorraussetung: V/W [mm]=\{0\}[/mm]
>  
> Äquivalenzklasse von v: [mm][v]=\{ v \in V:v-v' \in W\}[/mm]
>  Ich
> komme da nicht ganz auf einen Ansatz.
>  die Aufgabe klingt logisch, aber ich kann es nicht
> beweisen!


Vorausgesetzt ist also  V/W [mm]=\{0\}[/mm]. Zu zeigen ist: V=W

Dann nehmen wir uns doch mal ein beliebiges v [mm] \in [/mm] V vor. Nach Voraussetzung ist

                 [v]=[0],

Hilft das ?

FRED

Bezug
                
Bezug
Quotientenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:14 Do 01.03.2012
Autor: Lu-


> Vorausgesetzt ist also  V/W [mm]=\{0\}[/mm]. Zu zeigen ist: V=W
>  
> Dann nehmen wir uns doch mal ein beliebiges v [mm]\in[/mm] V vor.
> Nach Voraussetzung ist
>  
> [v]=[0],

[mm] [0]=\{ 0 +w:w\inW\}=0+W=W [/mm]
Jedes beliebige Element [mm] v\in [/mm] V ist auch in W.
V [mm] \subseteq [/mm] W
Da W Teilraum voN V  : W [mm] \subseteq [/mm] V
=> W=V

Hoffe es passt
Danke,

Bezug
                        
Bezug
Quotientenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Do 01.03.2012
Autor: fred97


> > Vorausgesetzt ist also  V/W [mm]=\{0\}[/mm]. Zu zeigen ist: V=W
>  >  
> > Dann nehmen wir uns doch mal ein beliebiges v [mm]\in[/mm] V vor.
> > Nach Voraussetzung ist
>  >  
> > [v]=[0],
>  [mm][0]=\{ 0 +w:w\inW\}=0+W=W[/mm]
>  Jedes beliebige Element [mm]v\in[/mm] V
> ist auch in W.
>  V [mm]\subseteq[/mm] W
>  Da W Teilraum voN V  : W [mm]\subseteq[/mm] V
>  => W=V

>  
> Hoffe es passt

Es passt.

FRED

>  Danke,


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]