www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenQuotientenregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Quotientenregel
Quotientenregel < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenregel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:52 Di 26.02.2013
Autor: ichicat

Aufgabe
Erste Ableitung von 1-1/x quadrat +1

Guten Tag, ich bin neu hier:)
Ich habe eine Schwierigkeit bei der 1 Ableitung berechnen von 1-1/x quadrat + 1
Laut dem Lehrer kommt 2x/(x quadrat+1)hoch 2 raus
aber ich habs mal so probiert: bei der ableitung fällt ja die 1 weg und nur das Vorzeichen bleibt nurnoch: also hab ich - (x quadrat+1)-1*2x/(x quadrat+1)hoch 2 laut der quotientenregel
also hab ich als Endergebnis -x quadrat+1/( x quadrat +1) hoch 2
das passt aber nicht mit dem Ergebnis vom Lehrer überein. Hab ich einen wichtigen Schritt übersehen ? Ich hoffe jemand kann mir weiterhelfen:(
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Di 26.02.2013
Autor: steppenhahn

Huhu,


> Erste Ableitung von 1-1/x quadrat +1
>  Guten Tag, ich bin neu hier:)

dann [willkommenmr]

Bitte nutze den Formeleditor, weil sonst kann man nur erahnen, was für eine Funktion du vorliegen hast...

Ich vermute:

$f(x) = 1 - [mm] \frac{1}{x^2+1}$. [/mm]


>  Laut dem Lehrer kommt 2x/(x quadrat+1)hoch 2 raus

Also sagt der lehrer:

$f'(x) = [mm] \frac{2x}{(x^2+1)^2}$. [/mm]

Das ist das richtige Ergebnis.

>  aber ich habs mal so probiert: bei der ableitung fällt ja
> die 1 weg und nur das Vorzeichen bleibt nurnoch:

Ja.

> also hab
> ich - [mm] [\red{(x quadrat+1)}-1*2x]/(x [/mm] quadrat+1)hoch 2 laut der
> quotientenregel


>  also hab ich als Endergebnis -x quadrat+1/( x quadrat +1)
> hoch 2
>  das passt aber nicht mit dem Ergebnis vom Lehrer überein.
> Hab ich einen wichtigen Schritt übersehen ? Ich hoffe
> jemand kann mir weiterhelfen:(

  
Ja. Der erste Summand (oben rot), den gibt es gar nicht. Wenn du die Quotientenregel bei der Funktion $g(x) = [mm] \frac{1}{x^2+1}$ [/mm] ausführen möchtest, musst du ja rechnen:

$g'(x) = [mm] \frac{[1]'*(x^2 + 1) - 1*[x^2 + 1]'}{(x^2+1)^2}$. [/mm]

Das heißt beim ersten Summanden wird die "Funktion" 1 abgeleitet! Aber [1]' = 0, deswegen verschwindet der erste Summand.


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]