R-Moduln < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 23:23 Mo 16.06.2008 | Autor: | Esra |
Aufgabe | Es seien R ein kommutativer Ring mit 1, M, M' R-Moduln und g: M [mm] \to [/mm] M,
g': M' [mm] \to [/mm] M' R-lineare Abbildungen.
Zeigen Sie, dass die so gegebenen R(X)-Moduln (M,g) und ( M',g') genau dann isomorph sind, wenn ein Isomorphismus f: M [mm] \to [/mm] M' von R-Moduln existiert, so daß gilt g' = f [mm] \circ [/mm] g [mm] \circ f^{-1}. [/mm] |
Hallo zusammen,
ich brauche dringend hilfe,
wie soll ich hier bei so vielen Einzelheiten einen klaren blick bekommen.
Ganz in ernst, verstehe nicht von dieser Aufgabenstellung.
Würde mich auf jede Rücksprache freuen.
Vielen dank im Voraus
Lg
|
|
|
|
> Es seien R ein kommutativer Ring mit 1, M, M' R-Moduln und
> g: [mm]M\to[/mm] M,
> g': [mm]M'\to[/mm] M' R-lineare Abbildungen.
> Zeigen Sie, dass die so gegebenen R(X)-Moduln (M,g) und (
> M',g') genau dann isomorph sind, wenn ein Isomorphismus f:
> [mm]M\toM'[/mm] von R- Moduln existiert, do daß gilt [mm]g'=f\circ[/mm] g
> [mm]f^{-1}.[/mm]
> Hallo Zusammen,
>
> ich brauche dringend hilfe,
>
> wie soll ich hier bei so vielen Einzelheiten einen klaren
> blick bekommen.
> Ganz in ernst, verstehe nicht von dieser
> Aufgabenstellung.
Hallo,
einen klareren Blick bekommt man in der Regel, wenn man sich als erstes mal die Zutaten der Aufgaben klarmacht. Hast Du das schon getan? (Falls ja: poste so etwas mit. Das wären auch die erwünschten eigenen Lösungsansätze
Mir geht es bei dieser Aufgabe so, daß ich zwar weiß, was ein R-Modul und eine R-lineare Abbildung ist, auch Modulisomorphismus ist mir bekannt, aber beim Rest gibt es für mich Erklärungsbedarf - und da ich denke, daß es Dich voranbringt, wenn Du die die Dinge mal aufzuschreibst, frage ich lieber Dich als mein Internet (ein Buch zum Thema hab' ich nicht):
Was ist denn mit R(X) gemeint? Polynome üver R, also R[X]?
Was verbirgt sich hinter (M,g)?
Da steht, daß (M,g) ein R(X)-Modul ist. Wie werden denn die Elemente von von (M,g) mit denen von R(X) verknüpft?
Das wären aus meiner Sicht die Dinge, die man als allererstes wissen müßte.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 20:18 Di 17.06.2008 | Autor: | Pawelos |
Hi ich mach gerade die selbe Aufgabe, und weis auch nicht weiter!
> Was ist denn mit R(X) gemeint? Polynome üver R, also R[X]?
JA.
> Was verbirgt sich hinter (M,g)?
> Da steht, daß (M,g) ein R(X)-Modul ist. Wie werden denn die
> Elemente von von (M,g) mit denen von R(X) verknüpft?
p = [mm] \summe_{i=0}^{n} a_{i}x^{i} \in [/mm] R[x], m [mm] \in [/mm] M
p*m = [mm] (\summe_{i=0}^{n} a_{i}x^{i})*m [/mm] := [mm] \summe_{i=0}^{n} a_{i}g^{i}(m)
[/mm]
kurz
xm := g(m)
und (M,g) bezeichnet das R[x]-Modul mit der obigen Definition der "Skalamultiplikation" R[x] x M [mm] \to [/mm] M
zur Aufgabe:
Sei (M,g) [mm] \cong [/mm] (M',g')
dann ist [mm] \phi [/mm] : M [mm] \to [/mm] (M,g) ; m [mm] \mapsto [/mm] xm = g(m) ein Isomorphismus
[mm] \Rightarrow [/mm] M [mm] \cong [/mm] (M,g)
[mm] \Rightarrow [/mm] M [mm] \cong [/mm] (M,g) [mm] \cong [/mm] (M',g') [mm] \cong [/mm] M'
[mm] \Rightarrow [/mm] f: M [mm] \to [/mm] M' existiert .
aber warum gilt g' = f [mm] \circ [/mm] g [mm] \circ f^{-1}
[/mm]
wenn der rest überhaupt richtig ist!
tja für die Rückrichtung hab ich überhaupt keine Idee
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Do 19.06.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|