www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraR-Moduln und Isomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - R-Moduln und Isomorphismus
R-Moduln und Isomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R-Moduln und Isomorphismus: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:31 Mi 13.06.2007
Autor: Milka_Kuh

Aufgabe
Sei R ein Ring und [mm] M_{\alpha}, \alpha \in [/mm] I, eine Familie von R-Moduln.
Z.z: die kanonische Abb. [mm] \phi: [/mm]
[mm] \produkt_{\alpha \in I} Hom_{R}(M_{\alpha},N) \to Hom_{R}(\oplus M_{\alpha}, [/mm] N),
die jeder Familie von Abb. [mm] (f_{\alpha})_{\alpha \in I} [/mm] die Abb. [mm] (m_{\alpha})_{\alpha \in I} \mapsto \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm] zuordnet, wohldefiniert ist und für jeden R-Modul N ein Isomorphismus ist.

Hallo,
bei dieser Aufgabe habe ich an manchen Stellen Schwierigkeiten und hoffe, dass mir jemand weiter hilft! Dafür wäre ich sehr dankbar.
Ich habe folgendes gemacht:
Es gilt doch [mm] \phi: (f_{\alpha})_{\alpha \in I} \mapsto \psi(m_{\alpha})_{\alpha \in I} [/mm] = [mm] \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm]

Stimmt die Definition der Abb. so? Diese Abb. hab ich mir aus den Angaben zusammengebastelt, und bin mir da nicht sicher, ob das richtig ist :-)

Zur Wohldefiniertheit:
Gelte [mm] f_{\alpha} [/mm] = [mm] g_{\alpha} [/mm]
[mm] \gdw f_{\alpha} [/mm] - [mm] g_{\alpha} [/mm] = 0
[mm] \gdw \summe_{\alpha \in I} (f_{\alpha} [/mm] - [mm] g_{\alpha}) (m_{\alpha}) [/mm] = 0, wegen der direkten Summe.
Hier weiß ich nicht, ob ich einfach dieses [mm] (m_{\alpha}) [/mm]  dazu schreiben kann...
[mm] \gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm] -  [mm] \summe_{\alpha \in I} (g_{\alpha}(m_{\alpha}) [/mm] = 0
[mm] \gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm] =  [mm] \summe_{\alpha \in I} (g_{\alpha}(m_{\alpha}) [/mm]
[mm] \gdw \phi((f_{\alpha})_{\alpha}) [/mm] = [mm] \phi((g_{\alpha})_{\alpha}) [/mm]

Stimmt das so?

Dann zum Gruppenhomomorphismus:
[mm] \phi((f_{\alpha})_{\alpha} [/mm] + [mm] ((g_{\alpha})_{\alpha}) [/mm] = [mm] \summe_{\alpha \in I} (f_{\alpha} [/mm] + [mm] g_{\alpha}) (m_{\alpha}) [/mm] = [mm] \summe_{\alpha \in I} f_{\alpha} (m_{\alpha}) [/mm]  + [mm] \summe_{\alpha \in I} g_{\alpha} (m_{\alpha}) [/mm] = [mm] \phi((f_{\alpha})_{\alpha}) [/mm] + [mm] \phi((g_{\alpha})_{\alpha}) [/mm]

Da weiß ich nicht, ob das so stimmt.

Dann zur Bijektivität von [mm] \phi: [/mm]
Bei der Injektivität habe ich einfach den Beweis von der Wohldefiniertheit von hinten aufgezogen.
Kann man das so machen?

Zur Surjektivität:
Sei [mm] \phi((f_{\alpha})_{\alpha}) [/mm] := w
[mm] \summe_{\alpha \in I} f_{\alpha} (m_{\alpha}) [/mm] = w
Jetzt habe ich ein Problem, da ich nicht weiß, wie ich weiter machen soll. Man muss, glaub ich, eine Abb. [mm] f_{alpha} [/mm] finden, die dies erfüllt.
Aber wie geht das?

Danke schonmal für die Hilfe.

Lg, Milka

        
Bezug
R-Moduln und Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Mo 18.06.2007
Autor: Mad_phoenix


> Sei R ein Ring und [mm]M_{\alpha}, \alpha \in[/mm] I, eine Familie
> von R-Moduln.
>  Z.z: die kanonische Abb. [mm]\phi:[/mm]
>  [mm]\produkt_{\alpha \in I} Hom_{R}(M_{\alpha},N) \to Hom_{R}(\oplus M_{\alpha},[/mm]
> N),
> die jeder Familie von Abb. [mm](f_{\alpha})_{\alpha \in I}[/mm] die
> Abb. [mm](m_{\alpha})_{\alpha \in I} \mapsto \summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm]
> zuordnet, wohldefiniert ist und für jeden R-Modul N ein
> Isomorphismus ist.
>  Hallo,
>  bei dieser Aufgabe habe ich an manchen Stellen
> Schwierigkeiten und hoffe, dass mir jemand weiter hilft!
> Dafür wäre ich sehr dankbar.
>  Ich habe folgendes gemacht:
>  Es gilt doch [mm]\phi: (f_{\alpha})_{\alpha \in I} \mapsto \psi(m_{\alpha})_{\alpha \in I}[/mm]
> = [mm]\summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm]
>
> Stimmt die Definition der Abb. so? Diese Abb. hab ich mir
> aus den Angaben zusammengebastelt, und bin mir da nicht
> sicher, ob das richtig ist :-)
>  
> Zur Wohldefiniertheit:
>  Gelte [mm]f_{\alpha}[/mm] = [mm]g_{\alpha}[/mm]
>  [mm]\gdw f_{\alpha}[/mm] - [mm]g_{\alpha}[/mm] = 0
>  [mm]\gdw \summe_{\alpha \in I} (f_{\alpha}[/mm] - [mm]g_{\alpha}) (m_{\alpha})[/mm]
> = 0, wegen der direkten Summe.
>  Hier weiß ich nicht, ob ich einfach dieses [mm](m_{\alpha})[/mm]  
> dazu schreiben kann...
> [mm]\gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm] -  
> [mm]\summe_{\alpha \in I} (g_{\alpha}(m_{\alpha})[/mm] = 0
>  [mm]\gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm] =  
> [mm]\summe_{\alpha \in I} (g_{\alpha}(m_{\alpha})[/mm]
>  [mm]\gdw \phi((f_{\alpha})_{\alpha})[/mm]
> = [mm]\phi((g_{\alpha})_{\alpha})[/mm]
>  
> Stimmt das so?

Ich glaube nicht. Ich verstehe die Wohldefiniertheit hier so, dass du zeigen sollst, dass das bild von einem [mm]f_\alpha[/mm] auch wirklich aus [mm] Hom_{R}(\oplus M_{\alpha},[/mm]  stammt. Was versuchst du denn da zu zeigen?

>  
> Dann zum Gruppenhomomorphismus:
>  [mm]\phi((f_{\alpha})_{\alpha}[/mm] + [mm]((g_{\alpha})_{\alpha})[/mm] =
> [mm]\summe_{\alpha \in I} (f_{\alpha}[/mm] + [mm]g_{\alpha}) (m_{\alpha})[/mm]

[mm]\summe_{\alpha \in I} (f_{\alpha} + \summe_{\alpha \in I}g_{\alpha}) (m_{\alpha})[/mm]

> = [mm]\summe_{\alpha \in I} f_{\alpha} (m_{\alpha})[/mm]  +
> [mm]\summe_{\alpha \in I} g_{\alpha} (m_{\alpha})[/mm] =
> [mm]\phi((f_{\alpha})_{\alpha})[/mm] + [mm]\phi((g_{\alpha})_{\alpha})[/mm]
>  
> Da weiß ich nicht, ob das so stimmt.

Es stimmt alles soweit nur das du den entscheidenden Schritt übersprungen hast meiner Ansicht nach :). Das Problem hier ist nähmlich nicht das auseinander ziehen einzelner f und g sondern die Tatsache dass die Indexmenge hier nicht endlich sein muss und man dann nicht einfahc die Summen auseinander ziehen kann.  Hierfür musst du noch mit der Definition der Direkten Summe argumentieren.

>  
> Dann zur Bijektivität von [mm]\phi:[/mm]
>  Bei der Injektivität habe ich einfach den Beweis von der
> Wohldefiniertheit von hinten aufgezogen.
> Kann man das so machen?
>  
> Zur Surjektivität:
>  Sei [mm]\phi((f_{\alpha})_{\alpha})[/mm] := w
>  [mm]\summe_{\alpha \in I} f_{\alpha} (m_{\alpha})[/mm] = w
>  Jetzt habe ich ein Problem, da ich nicht weiß, wie ich
> weiter machen soll. Man muss, glaub ich, eine Abb.
> [mm]f_{alpha}[/mm] finden, die dies erfüllt.
>  Aber wie geht das?
>  
> Danke schonmal für die Hilfe.
>  
> Lg, Milka


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]