www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeR-Vektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - R-Vektorraum
R-Vektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R-Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Mo 10.12.2007
Autor: mattemonster

Aufgabe
Sei M eine Menge. Zeigen Sie, dass Abb(M, [mm] \IR) [/mm] mit Addition und Skalarmultiplikation ein [mm] \IR [/mm] - Vektorraum ist.  

Muss ich da jetzt erstmal zeigen, dass [mm] (Abb(M,\IR), [/mm] +, 0) eine abelsche Gruppe ist? Und dann auch noch die Bedingungen für die Abbildung
K [mm] \times [/mm] V  [mm] \to [/mm] V,  [mm] (\lambda,v) \mapsto \lambda*v [/mm]  ??

Oder wie ist die Aufgabe zu verstehen??

        
Bezug
R-Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Mo 10.12.2007
Autor: andreas

hi

> Sei M eine Menge. Zeigen Sie, dass Abb(M, [mm]\IR)[/mm] mit Addition
> und Skalarmultiplikation ein [mm]\IR[/mm] - Vektorraum ist.
> Muss ich da jetzt erstmal zeigen, dass [mm](Abb(M,\IR),[/mm] +, 0)
> eine abelsche Gruppe ist?

ja, das musst du. überlege dir aber zuerst mal, wie die addition von zwei funktionen von $M$ nach [mm] $\mathbb{R}$ [/mm] definiert ist. dann siehst du, dass sich viele eigenschaften aus den entsprechenden eigenschaften der reellen zahlen ergeben.
also gib an, wie diese addition definiert ist.



> Und dann auch noch die
> Bedingungen für die Abbildung
> K [mm]\times[/mm] V  [mm]\to[/mm] V,  [mm](\lambda,v) \mapsto \lambda*v[/mm]  ??

wobei hier klar sein muss, was $K, V$ ist und wie diese skalarmultiplikation definiert ist.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]