R²\{0} einfach zusammenhängend < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Folgendes Vorwissen ist vorhanden:
Ein topologischer Raum $X$ heißt einfach zusammenhängend, wenn er wegzusammenhängend ist und jede stetige Funktion [mm] $f:S^1\rightarrow [/mm] X$ nullhomotop ist, wobei [mm] $S^1$ [/mm] den Rand des Einheitskreises bezeichnet.
Es wurde bereits gezeigt, dass die Identität auf [mm] $S^1$ [/mm] nicht nullhomotop ist, d.h. es existiert keine Homotopie [mm] $H:S^1\times [/mm] [0,1] [mm] \rightarrow S^1$ [/mm] mit $H(z,0) = z, H(z,1) = c$ mit einer Konstanten [mm] $c\in S^1$. [/mm] |
Es geht zunächst um die Frage, ob [mm] $\mathbb{R}^2\setminus\{0\}$ [/mm] einfach zusammenhängend ist. Die Antwort sollte 'Nein' sein, und als Begründung wurde dafür gegeben, dass sonst insbesondere die Identität als Abbildung von [mm] $S^1$ [/mm] nach [mm] $S^1 \subset\mathbb{R}^2\setminus\{0\}$ [/mm] nullhomotop wäre, Widerspruch.
Mich würde nun interessieren, warum man diese Argumentation nicht auf [mm] $\mathbb{R}^2$ [/mm] übertragen kann (ich sehe nämlich keinen Grund, wieso das nicht gehen sollte, aber [mm] $\mathbb{R}^2$ [/mm] ist ja einfach zusammenhängend), insbesondere, ob da ein Fehler in der Argumentation ist und wenn ja, wie man ihn beheben kann. Für Denkanstöße jeglicher Art wäre ich daher sehr dankbar.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:18 Di 30.06.2015 | Autor: | Ladon |
Hallo Feuerwerk,
natürlich ist [mm] \IR^2 [/mm] einfach zusammenhängend, allein schon deshalb, weil er auf einem Punkt zusammenziehbar ist. Man kann auch nach deiner Aussage zeigen, dass [mm] $id_{S^1}$ [/mm] auf [mm] S^1 [/mm] nach [mm] S^1\subseteq \IR^2 [/mm] nullhomotop ist, denn es exisiert eine Homotopie mit $H(z,0)=z$ und $H(z,1)=c$ mit [mm] c\in S^1 [/mm] und zwar
[mm] $$H:S^1\times I\to\IR^2, [/mm] H(z,t)=(1-t)z + [mm] t\cdot c\mbox{ für ein }c\in S^1.$$
[/mm]
Du könntest natürlich auch [mm] $c\in \IR^2$ [/mm] wählen.
Bitte schau dir noch mal die Definition einer Homotopie an.
Was du sicherlich meinst, ist, dass [mm] $S^1$ [/mm] nicht nullhomotop ist, d.h. du kannst keine Homotopie [mm] $H:S^1\times I\to S^1$ [/mm] für die Identität angeben.
Dieses Argument kann man nutzen, wenn man weiß, dass sich [mm] $\IR^2\setminus \{0\}$ [/mm] auf eine [mm] $S^1$ [/mm] zusammenziehen lässt. Eine entsprechende Deformationsretraktion anzugeben ist eigentlich leicht. Ich möchte dahingehend nicht spoilern.
Viele Grüße
Ladon
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:51 Di 30.06.2015 | Autor: | Feuerkerk |
Hallo Ladon,
danke für deine Antwort. Ich glaube, mein Fehler war tatsächlich, dass ich unbedacht davon ausging, dass eine Abbildung, die in [mm] $S^1$ [/mm] nicht nullhomotop ist, dies auch in [mm] $\mathbb{R}^2$ [/mm] nicht ist (obwohl mir schon bewusst war, dass die Ebene einfach zusammenhängend ist und da irgendein Fehler sein musste).
Dass [mm] $\mathbb{R}^2\setminus\{0\}$ [/mm] nicht einfach zusammenhängend ist, würde ich dementsprechend nun wie folgt begründen:
Sei [mm] $c\in\mathbb{R}^2\setminus\{0\}$ [/mm] beliebig. Angenommen, es gäbe [mm] $H:S^1\times [0,1]\rightarrow \mathbb{R}^2\setminus\{0\}$ [/mm] stetig, dann wäre mit $f(z) = [mm] \frac{z}{||z||}$ [/mm] (stetige Abbildung von [mm] $\mathbb{R}^2\setminus\{0\}$ [/mm] nach [mm] $S^1$) [/mm] die Verkettung [mm] $f\circ [/mm] H$ eine Homotopie zwischen einer Konstanten auf dem Einheitskreis und [mm] $id_{S^1}$, [/mm] Widerspruch.
|
|
|
|