www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenRadiale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Partielle Differentialgleichungen" - Radiale Funktion
Radiale Funktion < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radiale Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Do 17.10.2013
Autor: Inocencia

Aufgabe
Sei u [mm] \in C^{1}. [/mm] man zeige, u ist genau dann eine radiale Funktion, dh u hängt nur von [mm] r=\wurzel{x^{2}+y^{2}}, [/mm] wenn [mm] yu_{x}-xu_{y}=0 [/mm]

leider habe ich überhaupt keine Ahnung wie man da vorgehen muss :(
Ich habe nur den einen Term etwas umschrieben:

[mm] y\bruch{\partial u}{\partial x}= x\bruch{\partial u}{\partial y} [/mm]

ich weiss nur nicht ob mit das was bringt? Für tipps wäre ich sehr dankbar..l

        
Bezug
Radiale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Do 17.10.2013
Autor: Al-Chwarizmi


> Sei u [mm]\in C^{1}.[/mm]

Gemeint ist offenbar eine auf [mm] \IR^2 [/mm] definierte differenzier-
bare Funktion, also

    $\  u [mm] \in C^{1}(\IR^2)$ [/mm]

> man zeige, u ist genau dann eine radiale
> Funktion, dh u hängt nur von [mm]r=\wurzel{x^{2}+y^{2}},[/mm] wenn
> [mm]yu_{x}-xu_{y}=0[/mm]
>  leider habe ich überhaupt keine Ahnung wie man da
> vorgehen muss :(
>  Ich habe nur den einen Term etwas umschrieben:
>  
> [mm]y\bruch{\partial u}{\partial x}= x\bruch{\partial u}{\partial y}[/mm]
>  
> ich weiss nur nicht ob mit das was bringt? Für tipps wäre
> ich sehr dankbar..l


Zeige, dass der Gradient der Funktion an jeder Stelle,
wo er nicht verschwindet, radial gerichtet ist !
Eine weitere Möglichkeit wäre, eine Transformation zu
Polarkoordinaten [mm] (r,\varphi) [/mm] zu betrachten und zu zeigen,
dass überall  [mm] $\frac{\partial u(r,\varphi)}{\partial \varphi}\ [/mm] =\ 0$ gilt.

LG ,   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]