www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenRadizieren komplexer Zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Radizieren komplexer Zahlen
Radizieren komplexer Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radizieren komplexer Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Mi 24.02.2010
Autor: phily

Aufgabe
Lösen Sie die Gleichung [mm] z^{4} [/mm] = −8 + j 8 [mm] \wurzel{3} [/mm] nach z auf!!

Hallo Leute...
Habe zu der Aufgabe folgende Ergebnisse mitbekommen:

[mm] z_0 [/mm] = [mm] 2e^{j \bruch{\pi}{6}} [/mm]
[mm] z_1 [/mm] = [mm] 2e^{j \bruch{4\pi}{6}} [/mm]
[mm] z_2 [/mm] = [mm] 2e^{j \bruch{7\pi}{6}} [/mm]
[mm] z_3 [/mm] = [mm] 2e^{j \bruch{10\pi}{6}} [/mm]

Ich habe aber leider überhaupt keine Ahnung wie ich auf diese Ergebnisse komme. Ich kenne nur die ganz normale Formel nach Moivre mit cos und sin usw. zum Radizieren komplexer Zahlen.
Mich verwirrt jetzt diese Eulersche Zahl darin völlig. Hab schon alles mögliche ausprobiert, komme aber nie zum Ergebnis!! Bin schon total am verzweifeln.
Ich hoffe, mir kann einer von euch weiterhelfen???
Bin für jede Hilfe dankbar!

Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Radizieren komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Mi 24.02.2010
Autor: fencheltee


> Lösen Sie die Gleichung [mm]z^{4}[/mm] = −8 + j 8 [mm]\wurzel{3}[/mm] nach
> z auf!!

hier erstmal die imaginäre zahl auf der rechten seite in die polarform umwandeln, dann den satz anwenden:
[mm] \sqrt[n]{z} [/mm] = [mm] \sqrt[n]{r}\cdot e^{\mathrm i \frac{\varphi + 2k\pi}n}, [/mm] mit k=0,1,2,3

>  Hallo Leute...
>  Habe zu der Aufgabe folgende Ergebnisse mitbekommen:
>  
> [mm]z_0[/mm] = [mm]2e^{j \bruch{\pi}{6}}[/mm]
>  [mm]z_1[/mm] = [mm]2e^{j \bruch{4\pi}{6}}[/mm]
>  
> [mm]z_2[/mm] = [mm]2e^{j \bruch{7\pi}{6}}[/mm]
>  [mm]z_3[/mm] = [mm]2e^{j \bruch{10\pi}{6}}[/mm]
>  
> Ich habe aber leider überhaupt keine Ahnung wie ich auf
> diese Ergebnisse komme. Ich kenne nur die ganz normale
> Formel nach Moivre mit cos und sin usw. zum Radizieren
> komplexer Zahlen.
> Mich verwirrt jetzt diese Eulersche Zahl darin völlig.

statt der kartesischen form ist hier halt die polarform angewendet..
die verknüpfung läuft doch über [mm] e^{i\,x} [/mm] = [mm] \cos [/mm] x + [mm] i\,\sin [/mm] x

> Hab
> schon alles mögliche ausprobiert, komme aber nie zum
> Ergebnis!! Bin schon total am verzweifeln.
>  Ich hoffe, mir kann einer von euch weiterhelfen???
> Bin für jede Hilfe dankbar!
>  
> Gruß
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


gruß tee

Bezug
                
Bezug
Radizieren komplexer Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Mi 24.02.2010
Autor: phily


>  hier erstmal die imaginäre zahl auf der rechten seite in


okay, also ich habe für r=16 und der Winkel ist bei mir [mm] \bruch{\pi}{3} [/mm]


wenn ich das in deine Formel einsetze, bekomme ich bei [mm] z_{0} [/mm] aber z.b. raus:
[mm] z_{0}= [/mm] 2* [mm] e^{j \bruch{\pi}{12}} [/mm]

Was mach ich falsch??

Bezug
                        
Bezug
Radizieren komplexer Zahlen: falscher Winkel
Status: (Antwort) fertig Status 
Datum: 23:08 Mi 24.02.2010
Autor: Loddar

Hallo Phily!


Dein Winkel [mm] $\varphi$ [/mm] ist falsch. Schließlich liegt die gegebene komplexe Zahl im 2. Quadranten der Gauß'schen Zahlenebene, so dass gelten muss:
[mm] $$\bruch{\pi}{2} [/mm] \ < \ [mm] \varphi [/mm] \ < \ [mm] \pi$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]