www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenRandwertprob., Fixpunktiterati
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Partielle Differentialgleichungen" - Randwertprob., Fixpunktiterati
Randwertprob., Fixpunktiterati < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Randwertprob., Fixpunktiterati: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:17 So 04.07.2010
Autor: Denny22

Hallo an alle,

bei mir geht es um eine Gleichung der Form

     [mm] $0=A\triangle u+f(u),\quad x\in\IR^2$ [/mm]

Um die Existenz einer Lösung zu bestimmen, soll der Banachsche Fixpunktsatz angewendet werden. Dazu ist es zunächst notwendig eine Iterationsvorschrift anzugeben. Ich habe hier stehen

     [mm] $0=A\triangle u^{k+1}+f'(0)u^{k+1}+f(u^{k})-f'(0)u^{k},\quad k\in\IN$ [/mm]

und anschließend wurde die Gleichung umgestellt zu

     [mm] $A\triangle u^{k+1}+f'(0)u^{k+1}=f'(0)u^{k}-f(u^{k}),\quad k\in\IN$ [/mm]

Meine Fragen:
1. Wie komme ich auf diese Iterationsvorschrift?
2. Wie ist nun meine Iterationsvorschrift definiert, d.h. [mm] $u^{k+1}=$? [/mm] Ich vermute, dass wenn ich den Operator [mm] $L:=A\triangle+f'(0)$ [/mm] definiere, so muss ich zunächst die Invertierbarkeit dieses Operators zeigen, oder?

Vielen Dank vorab für die Antworten.

        
Bezug
Randwertprob., Fixpunktiterati: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 So 04.07.2010
Autor: Denny22

Falls hierbei die Taylorentwicklung von $f$ in $0$ eine Rolle spielen sollte, muss ich hinzufügen, dass

     $f(0)=0$

gilt.

Bezug
        
Bezug
Randwertprob., Fixpunktiterati: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 07.07.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]