www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungRang?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Rang?
Rang? < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 So 15.08.2004
Autor: kai

Hi,

hab grad mal ein riesiges Brett vorm Kopf.
Hab folgende Matrix:

[mm] \pmat{-2 & 1 & 3 & -1 & | & 2 \\ 0 & 0 & 5 & 0 & | & -5 \\ 0 & 0 & 5 & 0 & | & -5 \\ 0 & 0 & 10 & 0 & | & -10} [/mm]

Ist der Rang = 1 oder ist der Rang = 2?
Danke für etwaige Hilfe.

        
Bezug
Rang?: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 So 15.08.2004
Autor: Micha

Hallo Kai mal wieder bei Rangberechnung? :-)

[mm]rang \pmat{-2 & 1 & 3 & -1 & | & 2 \\ 0 & 0 & 5 & 0 & | & -5 \\ 0 & 0 & 5 & 0 & | & -5 \\ 0 & 0 & 10 & 0 & | & -10} = rang \pmat{-2 & 1 & 3 & -1 & | & 2 \\ 0 & 0 & 5 & 0 & | & -5 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0} = 2 [/mm]
Das sieht man auch in der Ausgangsmatrix, weil die letzten 3 Zeilen linear abhängig voneinander sind.

Gruß Micha


Bezug
                
Bezug
Rang?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 So 15.08.2004
Autor: kai

Hi Micha,

ja ich hab auch eher zu Rang = 2 tendiert. War nur ein bissel verwirrt, weil die 5 nicht in einer Diagonalen mit [mm] a_{11} [/mm] war.

Danke für Deine Hilfe.

Gruss Kai

Bezug
        
Bezug
Rang?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Do 19.08.2004
Autor: Fermat2k4

Hallo an alle !

Ich wollte nur mal allgemein was zum Rang einer Matrix sagen.

Der Rang einer Matrix, wobei Zeilenrang = Spaltenrang, ist die Anzahl linear unabhängiger Vektoren. Diese bekommt man relativ mühelos mit gängigen Verfahren wie z.B Gauss heraus.

Gruß

Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]