www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRang(A) und Rang (A,b)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Rang(A) und Rang (A,b)
Rang(A) und Rang (A,b) < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang(A) und Rang (A,b): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Do 05.02.2009
Autor: Englein89

Hallo,

ich möchte mir gerne für die Klausur einmal ordentlich aufschreiben, was mir die Lösungen für den Rang(A) und den Rang(A,b) bringen, wenn diese gefordert sind und evtl eine Interpretation.

Ich habe bisher Folgendes:

Rang(A) = Rang(A,b)=n: eindeutig lösbar und die Matrix ist regulär
Rang(A) = Rang(A,b)<n: unendliche viele Lösungen und die Matrix ist singulär
Rang(A) < Rang (A,b) unlösbar
(kann ich hier auch etwas zu regulär oder singulär sagen?)

Außerdem kann ich doch sagen, dass mir der Rang(A) angibt, wie viele linear abhängige Vektoren ich habe, oder?


        
Bezug
Rang(A) und Rang (A,b): Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Do 05.02.2009
Autor: angela.h.b.


> Hallo,
>  
> ich möchte mir gerne für die Klausur einmal ordentlich
> aufschreiben, was mir die Lösungen für den Rang(A) und den
> Rang(A,b) bringen, wenn diese gefordert sind und evtl eine
> Interpretation.

Hallo,

Deine n wollen mir nicht richtig schmecken, weil Du nirgends sagst, welches Format die Matrix A hat.

Wenn sie n Spalten und m Zeilen hat, also eine mxn-Matrix ist, ist das, was Du schreibst richtig.


>  
> Ich habe bisher Folgendes:
>  
> Rang(A) = Rang(A,b)=n: eindeutig lösbar und die Matrix ist
> regulär
>  Rang(A) = Rang(A,b)<n: unendliche viele Lösungen und die
> Matrix ist singulär
>  Rang(A) < Rang (A,b) unlösbar
>  (kann ich hier auch etwas zu regulär oder singulär
> sagen?)

Das spielt hier keine Rolle. Es kann die Matrix A regulär oder singulär sein, wennRang(A) < Rang (A,b) , dann ist das System in jedem fall unlösbar.

>  
> Außerdem kann ich doch sagen, dass mir der Rang(A) angibt,
> wie viele linear abhängige Vektoren ich habe, oder?

Ja.

Gruß v. Angela


>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]