www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRang einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Rang einer Matrix
Rang einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Di 02.09.2014
Autor: Joghurt

Aufgabe
Aufgabe 4.8: (Rang, allgemeine L¨osung)
Durch Gauß’sche Elimination ist aus einem Gleichungssystem f¨ur die Unbe-
kannten x1, x2, . . . , x6 die folgende erweiterte Koeffizientennmatrix in Trep-
penstufenform entstanden:

1 0 2 −1 2 0 3
0 1 0 3 1 −2 −5
0 0 0 0 1 0 5
0 0 0 0 0 0 0

1. Welchen Rang hat die Matrix des Gleichungssystems?
2. Welchen Rang hat die erweiterte Matrix?
3. Welche Unbekannten können Sie für eine Lösung frei wählen, und wie
sieht die allgemeine Lösung des Gleichungssystems aus?


Wie erkenne ich nun bei einer derartigen Matrix den Rang? Bei anderen Matrizen ist das ja recht offensichtlich, aber hier...  Ich komme auf einen Rang von 1 und für die erweiterete Matrix auf einen Rang von 3. Ist laut Lösung aber falsch. Ich hoffe, mir kann jemand helfen.

        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Di 02.09.2014
Autor: fred97


> Aufgabe 4.8: (Rang, allgemeine L¨osung)
>  Durch Gauß’sche Elimination ist aus einem
> Gleichungssystem f¨ur die Unbe-
>  kannten x1, x2, . . . , x6 die folgende erweiterte
> Koeffizientennmatrix in Trep-
>  penstufenform entstanden:
>  
>  1 0 2 −1 2 0 3
>  0 1 0 3 1 −2 −5
>  0 0 0 0 1 0 5
>  0 0 0 0 0 0 0
>  
>  1. Welchen Rang hat die Matrix des Gleichungssystems?
>  2. Welchen Rang hat die erweiterte Matrix?
>  3. Welche Unbekannten können Sie für eine Lösung frei
> wählen, und wie
>  sieht die allgemeine Lösung des Gleichungssystems aus?
>  
> Wie erkenne ich nun bei einer derartigen Matrix den Rang?
> Bei anderen Matrizen ist das ja recht offensichtlich, aber
> hier...  Ich komme auf einen Rang von 1 und für die
> erweiterete Matrix auf einen Rang von 3. Ist laut Lösung
> aber falsch. Ich hoffe, mir kann jemand helfen.

Der Rang ist die Anzahl der linear unabhängigen Zeilen.

Der Rang der Matrix ist also 3 und ebenso hat die erw. Matrix den Rang 3.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]