Rang einer Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo Leute,
Hier ist noch eine Aufgabe mit der ich gegenwärtig zu kämpfen
habe.
Aufgabe:
Zeige: Eine Matrix $A [mm] \in [/mm] (m [mm] \times [/mm] n, [mm] \IR)$ [/mm] mit $m [mm] \ge [/mm] n$ hat den Rang n genau dann, wenn durch Multiplikation mit der Matrix keine zwei verschiedenen Vektoren auf denselben Vektor abgebildet werden.
Eine Matrix kann man ja durch Zeilenumformungen auf Stufenform
bringen. Und der Rang ist dann die Anzahl von Spalten, in denen nur
eine 1 und sonst nur Nullen stehen. Aber irgendwie ist mir nicht klar,
was hier wie multipliziert wird. Könnte vielleicht jemand das Ganze
in einer mathematischen Form aufschreiben?
Vielen Dank!
Viele Grüße
Karl
|
|
|
|
Hi.
Meine bescheidenen LA-Kenntnisse sagen mir, dass man diese Aufgabe mit dem Rangsatz lösen kann, indem man die Matrix mit einer geeigneten linearen Abbildung identifiziert.
Der Rangsatz lautet:
Es sei [mm] $f:V\to [/mm] V'$ eine K-lineare Abbildung zwischen Vektorräumen.
Dann gilt:
[mm] $\dim_K V=\dim_K(\ker f)+\dim_K(\mbox{im} [/mm] f)$
Du kannst es ja mal damit versuchen.
|
|
|
|
|
Hallo Philipp,
Also als "geeignete lineare Abbildung" habe ich
[m]\begin{matrix}
f:& \IK^m \rightarrow \IK^m \\
f:& x \mapsto Ax
\end{matrix}[/m]
gewählt und nach dem Rangsatz gilt dann:
$m = dim(ker(f))+m$, oder aber was habe ich dann damit gezeigt?
Was ich noch festgestellt habe: Offenbar besteht der Beweis dazu aus
2 Teilen [mm] ($\Rightarrow$, $\Leftarrow$). [/mm] Und beim ersten Teil muß man
offenbar die Injektivität von f beweisen, richtig? Aber wie hängen Rang
und Injektivität hier zusammen? Oje, ich glaub' ich bin total verwirrt! :(
Danke nochmal!
Viele Grüße
Karl
|
|
|
|
|
Hi.
Die Abbildung hätte ich fast genauso gewählt, es muss aber
[mm] $f:K^n\to K^m$ [/mm] heißen, vielleicht meintest du das ja auch (denn deine Matrix ist ja eine (m,n), keine (m,m) Matrix).
Die Werte, die du für die im Rangsatz auftretenden Größen eingesetzt hast, stimmen damit dann noch nicht, denke nochmal drüber nach.
Wie du richtig erkannt hast, besteht der eine Teil der Aufgabe darin, die Injektivität der Abbildung zu zeigen.
Der zentrale Satz hierfür ist:
Eine K-lineare Abbildung [mm] $f:V\to [/mm] V'$ zwischen Vektorräumen ist genau dann injektiv, wenn [mm] $\ker [/mm] f=0$ gilt.
Was folgt damit natürlich für [mm] $\dim_K(\ker [/mm] f)$?
Und schaffst du es, damit die eine Richtung zu zeigen?
Viel Erfolg
Philipp
|
|
|
|
|
Hallo Philipp,
Danke für die bisherige Hilfe:
Ich glaube die Richtung [mm] "$\Leftarrow$" [/mm] geht so:
Sei f wie du gesagt hast, dann gilt nach dem Rangsatz:
$n = dim(ker(f)) + rang(f) = dim(ker(f)) + m$.
Na ja, und da du ja sagst, daß dim(ker(f)) für Injektivität 0 ist,
gilt n = m, damit haben wir jetzt bewiesen, daß wir es mit einer
quadratischen Matrix zu tun haben. Aber haben wir dann wirklich
gezeigt, daß diese Matrix den Rang n hat?
Grüße
Karl
|
|
|
|
|
Fast, aber nicht ganz!
> Ich glaube die Richtung "[mm]\Leftarrow[/mm]" geht so:
> Sei f wie du gesagt hast, dann gilt nach dem Rangsatz:
> [mm]n = dim(ker(f)) + rang(f) = dim(ker(f)) + m[/mm].
Du weißt doch nichts über den Rang... laß ihn doch einfach so stehen! Schließlich gilt $rang(f) = rang(A)$ für Deine so gewählte Abbildung. Und wenn Du dann die letzte Gleichheit wegläßt, folgt $n = rang(A)$ und das war in dieser Richtung zu zeigen.
Die andere geht im Prinzip genauso... wenn Du schon weißt, dass $rang(f) = n$ gilt, was folgt dann für $ker(f)$? Und wie hängt nochmal der Kern mit der Injektivität zusammen...?
Lars
|
|
|
|