www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRang einer Matrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Rang einer Matrix
Rang einer Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Frage
Status: (Frage) beantwortet Status 
Datum: 22:06 So 16.01.2005
Autor: VHN

Hallo, Leute!

Ich hätte da eine Verständnisfrage.
Wenn ich eine Matrix M [mm] \in K^{m,n} [/mm] gegeben habe, weiß ich ja, dass der Unterraum [mm] \subseteq K^{1,n} [/mm] der Zeilenraum von M ist und dass dim [mm] [/mm] der Zeilenrang von M ist.
Das Gleiche gilt für den Spaltenraum [mm] , [/mm] der Unterraum ist von [mm] K^{m}. [/mm] Und es gilt außerdem, dass dim [mm] [/mm] der Spaltenrang ist.

Wenn ich nun zwei Matrizen gegeben habe,
N [mm] \in K^{m} [/mm] und P [mm] \in K^{1,n}, [/mm]
weiß ich aus der Vorlesung, dass der Rang dieser Matrizen kleiner gleich 1 ist.
Aber ich verstehe nicht ganz warum.
Ist es richtig, wenn ich sage, dass der Rang  [mm] \le [/mm] 1 ist, weil N nur aus einer Spalte besteht und analog, weil P nur aus einer Zeile besteht.
Oder wie kann ich es richtig begründen?

N kann ich doch so schreiben, oder?
N = [mm] \vektor{a_{1} \\ . \\ . \\ . \\ a_{m}} [/mm]
N ist hier speziell doch ein Vektor, ich kann N aber doch auch als Matrix schreiben, oder? So:
N = [mm] \pmat{ a_{1} & 0 \\ . & 0 \\ . & 0 \\ . & 0 \\ a_{m} & 0 } [/mm]

Wenn ich das so schreiben kann, kann ich N doch in die Zeilenstufenmatrix überführen, dann verstehe ich schon, warum der Rang dann kleiner gleich 1 ist. Weil dann nur noch eine Zeile bzw. keine übrig bleibt.
Aber ich meine Vorgehensweise richtig?
Bei P würde ich es analog machen.

Ich bitte um Aufklärung! Vielen Dank!
ciao!


        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 So 16.01.2005
Autor: Hanno

Hallo VHN!

> Ist es richtig, wenn ich sage, dass der Rang  $ [mm] \le [/mm] $ 1 ist, weil N nur aus einer Spalte besteht und analog, weil P nur aus einer Zeile besteht.

Ja, das kannst du so sagen. Du kannst es wie folgt begründen:

Der Rang einer Matrix ist als die Dimension des Spaltenraumes definiert. Wenn deine Matrix nur eine Spalte beinhaltet, dann kann der von dieser Spalte aufgespannte Unterraum höchstens die Dimension 1 haben. Da zudem für jede Matrix die Dimension des Spaltenraumes der des Zeilenraumes entspricht, kannst du dieses Argument auch auf Matrizen anwenden, die nur eine Zeile beinhalten. Insgesamt kannst du für eine Matrix [mm] $A\in K^{m\times n}$ [/mm] sagen: [mm] $Rang(A)\leq min(\{m,n\})$. [/mm]

Ich hoffe ich konnte dir helfen.

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]