www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRang einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Rang einer Matrix
Rang einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mi 18.06.2008
Autor: marko1612

Aufgabe
Bestimmen Sie den Rang der Matrix [mm] \pmat{ 1 & 2 & 2 & 2 & 3 \\ 1 & 3 & 3 & 3 & 4 \\ 1 & 3 & 4 & 4 & 5 \\ 2 & 7 & a & b & c } [/mm] in Abhängigkeit von a, b und c

Meine Rechnung:

[mm] \pmat{ 1 & 2 & 2 & 2 & 3 \\ 1 & 3 & 3 & 3 & 4 \\ 1 & 3 & 4 & 4 & 5 \\ 2 & 7 & a & b & c } [/mm] 2I-III   [mm] \pmat{ 1 & 2 & 2 & 2 & 3 \\ 1 & 3 & 3 & 3 & 4 \\ 1 & 1 & 0 & 0 & 1 \\ 2 & 7 & a & b & c } [/mm] 2I-II   [mm] \pmat{ 1 & 2 & 2 & 2 & 3 \\ 1 & 1 & 1 & 1 & 2 \\ 1 & 1 & 0 & 0 & 1 \\ 2 & 7 & a & b & c } [/mm] I-II   [mm] \pmat{ 1 & 2 & 2 & 2 & 3 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 2 & 7 & a & b & c } [/mm] tausch 2.Zeile mit 3.


[mm] \pmat{ 1 & 2 & 2 & 2 & 3 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 2 & a & 7 & b & c } [/mm] I-III   [mm] \pmat{ 1 & 2 & 2 & 2 & 3 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 2 & 2 \\ 2 & a & 7 & b & c } [/mm] 2I-IV   [mm] \pmat{ 1 & 2 & 2 & 2 & 3 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 2 & 2 \\ 0 & a-4 & 3 & b-4 & c-4 } [/mm] -2II+III  


[mm] \pmat{ 1 & 2 & 2 & 2 & 3 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & a-4 & 3 & b-4 & c-4 } [/mm] -(a-4)II+IV   [mm] \pmat{ 1 & 2 & 2 & 2 & 3 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & -a+7 & -a+b & -a+c } [/mm] (-a+7)III+IV


[mm] \pmat{ 1 & 2 & 2 & 2 & 3 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & -7+b & c-7 } [/mm]

Jetzt muss ich nur noch die a,b,c finden für die die Matrix den Rang 3 oder 4 habt richtig?

Für b,c=7 ist Rang= 3 und für [mm] b,c\not= [/mm] ist Rang =4

Ist das soweit alles richtig?

        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mi 18.06.2008
Autor: fred97

Ich habe Deine Rechnung nicht überprüft, aber wenn alles richtig sein sollte, ist

  "Für b,c=7 ist Rang= 3 "

richtig. danach solltest Du aber schreiben: falls b oder c ungleich 7, ist Rang = 4.

FRED

Bezug
                
Bezug
Rang einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 Mi 18.06.2008
Autor: marko1612

Das ungleich 7 steht ja da, so halb. Hab nur die 7 vergessen.
Wäre schön wenn das mal einer überprüfen könnte.

Danke fred

Bezug
                        
Bezug
Rang einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Mi 18.06.2008
Autor: fred97

Bei

"falls b oder c ungleich 7, ist Rang = 4"

liegt die Betonung auf dem Wort "oder"

FRED

Bezug
        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Do 19.06.2008
Autor: angela.h.b.

Hallo,

zunächst einmal grundsätzlich:
an einer Stelle schreibst Du, daß Du Zeilen tauschst. In Wahrheit aber tauschst Du Spalten, und ich rate Dir sehr vom Spaltentausch ab, denn wenn Du andere Fragestellungen bearbeitest, kann Dich der Tausch von Spalten ganz schön durcheinander bringen.

Dann kannst Du die Umformung Deiner Matrix auf ZSF sehr beschleunigen, wenn Du systematisch vorgehst.
Mach gleich im ersten Schritt die erste Spalte ab Zeile 2 zu Null, indem Du passende Vielfache der ersten Zeile subtrahierst, bei den anderen Spalten dann entsprechend.

Stutzig macht es mich, daß in Deiner ZSF das a überhaupt nicht mehr vorkommt, und das ist mir Anlaß, mal ein bißchen genauer zu gucken, was Du gerechnet hast:

bei 2I-IV sehe ich einen Rechenfehler, ebenso beim nächsten Schritt, den Du durchführst, welcher dann wohl zum Verschwinden des a führt.

Wie Dir Fred schon gesagt hat, sind die Folgerungen, die Du aus Deiner (verkehrten) ZSF ziehst, (fast) richtig. Auch ich weise nochmal daraufhin, daß es für Rang=4 heißen muß [mm] b\not=0 [/mm] oder [mm] c\not=0 [/mm]

Rechne fürs richtige Ergebnis nochmal neu.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]