www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRang einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Rang einer Matrix
Rang einer Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Frage
Status: (Frage) beantwortet Status 
Datum: 11:19 Do 03.03.2005
Autor: rothn

Hallo!
Ich habe eine Frage.
Vielleicht können sie mir helfen?
Mich inreressiert  rang einer Matrix, aber rür sehr großen Dimensionen
z(. B. für 100x50 oder sowas ähnliches)
ich will wießen welche Methoden sind dafür geeignet und welche Verfahren gibt es überhaupt?
Es gibt sehr vieles in Internet, aber es ist irgend wie nicht dass was ich brauche!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Do 03.03.2005
Autor: marthasmith

Hallo,

der Rang einer Matrix ist ja die maximale Anzahl von Zeilen bzw. Spalten.
Wenn du matlab benutzt, könntest du ihn einfach mit rank(Matrix) bestimmen.

Gruß

marthasmith

Bezug
                
Bezug
Rang einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 Do 03.03.2005
Autor: rothn

Hei, danke für deine Antwort, aber mit matlab geht es nicht.
Meine Aufgabe ist eigentlich, selbst ein Algorithmus zu schreiben, der der rang einer Matrix berechnet. Und dafür brauche die Theori oder Name des Verfahrens selbs!

Trontzdem Danke!

Bezug
        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Do 03.03.2005
Autor: fridolin

Hallo,
kleine Ergänzung zu martha's Antwort:
Der Rang gibt die maximale Anzahl von Spalten/Zeilen an,
wo die Determinante  [mm] \not= [/mm] 0 ist.

Nun ja, mehr fällt mir grad nicht ein  [keineahnung]

LG, frido

Bezug
        
Bezug
Rang einer Matrix: Zeilenstufenform
Status: (Antwort) fertig Status 
Datum: 12:33 Do 03.03.2005
Autor: Marc

Hallo rothn,

[willkommenmr]

Determinanten eignen sich bei großen Matrizen nur, wenn diese dünn besetzt sind (also viele Nullen als Einträge haben). In diesem Fall, wo man auch erst noch eine quadratische Untermatrix mit Determinante ungleich 0 finden muss, eignet es sich mMn gar nicht.

Deswegen würde ich vorschlagen, die Matrix mit dem Gauß-Algorithmus zunächst auf Zeilenstufenform zu bringen, und dann die Anzahl der Zeilen abzulesen, die nicht nur aus Nullen bestehen: Das ist dann der Rang der Matrix.
Da deine Beispiel-Matrix "ziemlich rechteckig" ist (50x100) bietet sich möglicherweise auch ein vorheriges Transponieren an, so dass die Zeilenzahl kleiner der Spaltenzahl ist.

Viele Grüße,
Marc



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]