www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRang einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Rang einer Matrix
Rang einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 So 18.12.2011
Autor: kullinarisch

Aufgabe
Es seien A [mm] \in M_{n,m}(\IK), [/mm] B [mm] \in M_{n,k}(\IK) [/mm] und M = [mm] \pmat{ A & 3B \\ 2A & -B } \in M_{2n,m+k}(\IK) [/mm]

Zeigen Sie rg(M) = rg(A) + rg(B).

Hallo zusammen!
Ich habe ein kleines Verständnisproblem zu dieser Schreibweise der Matrix M. Zunächst wollte ich die Matrix in das homogene LGS der Form M [mm] \lambda [/mm] = 0 schreiben, um sie zu vereinfachen und um möglichst viele Nullen zu erzeugen.
Nun sind in die vier Einträge in M ja wieder Matrizen. Wenn ich nun elementare Zeilentransformationen durchführe, muss ich doch die gesamten Zeilen bzw. Spalten von M betrachten und darf nicht etwa nur die von A oder B nehmen, oder? D.h. die erste Zeile wäre zb:

[mm] a_{1,1}...a_{1,m}3b_{1,1}...3b_{1,k} [/mm]

Wenn ich nun ein Vielfaches einer anderen Zeilen hier von abziehen möchte, muss ich es doch von dieser gesamten Zeile tun und nicht etwa nur von [mm] a_{1,1}...a_{1,m} [/mm] richtig?

Ich hoffe es ist einigermaßen klar was mich verwirrt. Es ist im Prinzip nur diese Schreibweise von Matrizien IN einer Matrix...

Grüße, kullinarisch

        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Mo 19.12.2011
Autor: fred97


> Es seien A [mm]\in M_{n,m}(\IK),[/mm] B [mm]\in M_{n,k}(\IK)[/mm] und M =
> [mm]\pmat{ A & 3B \\ 2A & -B } \in M_{2n,m+k}(\IK)[/mm]
>  
> Zeigen Sie rg(M) = rg(A) + rg(B).
>  Hallo zusammen!
>  Ich habe ein kleines Verständnisproblem zu dieser
> Schreibweise der Matrix M. Zunächst wollte ich die Matrix
> in das homogene LGS der Form M [mm]\lambda[/mm] = 0 schreiben, um
> sie zu vereinfachen und um möglichst viele Nullen zu
> erzeugen.
> Nun sind in die vier Einträge in M ja wieder Matrizen.
> Wenn ich nun elementare Zeilentransformationen durchführe,
> muss ich doch die gesamten Zeilen bzw. Spalten von M
> betrachten und darf nicht etwa nur die von A oder B nehmen,
> oder?


So ist es.

>  D.h. die erste Zeile wäre zb:
>
> [mm]a_{1,1}...a_{1,m}3b_{1,1}...3b_{1,k}[/mm]
>  
> Wenn ich nun ein Vielfaches einer anderen Zeilen hier von
> abziehen möchte, muss ich es doch von dieser gesamten
> Zeile tun


Ja

FRED


> und nicht etwa nur von [mm]a_{1,1}...a_{1,m}[/mm]
> richtig?
>  
> Ich hoffe es ist einigermaßen klar was mich verwirrt. Es
> ist im Prinzip nur diese Schreibweise von Matrizien IN
> einer Matrix...
>  
> Grüße, kullinarisch


Bezug
                
Bezug
Rang einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Mo 19.12.2011
Autor: kullinarisch

Ich danke dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]