www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesRank, Transponierte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Rank, Transponierte
Rank, Transponierte < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rank, Transponierte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 Sa 25.08.2012
Autor: quasimo

Aufgabe
Sei 0 [mm] \not= [/mm] x [mm] \in \IR^n. [/mm] Bestimme die Ränge der Matrizen x [mm] x^t [/mm] und [mm] x^t [/mm] x.

[mm] x^t [/mm] x = [mm] x_1^2 +x_2^2+...+x_n^2 [/mm]
[mm] rank(x^t [/mm] x ) =1

x [mm] x^t [/mm] = [mm] \vektor{x_1 \\ x_2 \\\vdots\\x_n} \vektor{x_1&x_2&..&x_n}= \pmat{ x_1^2 & x_1 * x_2 &..&x_1 x_n\\ x_2 x_1 & x_2^2 &..&x_2 x_n \\ \vdots\\x_n x_1 & x_n x_2 &..&x_n^2} [/mm]
Wie ist das nun mit dem Rank ??


LG,
quasimo

        
Bezug
Rank, Transponierte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Sa 25.08.2012
Autor: Marcel

Hallo,

> Sei 0 [mm]\not=[/mm] x [mm]\in \IR^n.[/mm] Bestimme die Ränge der Matrizen x
> [mm]x^t[/mm] und [mm]x^t[/mm] x.
>  [mm]x^t[/mm] x = [mm]x_1^2 +x_2^2+...+x_n^2[/mm]
>  [mm]rank(x^t[/mm] x ) =1

ja, nur, ich würde hier einfach der Deutlichkeit wegen bzgl. der Aufgabe
schreiben
[mm] $$x^tx=(x_1^2+...+x_n^2)\,.$$ [/mm]

Natürlich kann man eine $1 [mm] \times [/mm] 1$-Matrix mit ihrem Eintrag identifizieren, aber weil in der Aufgabe von Matrizen die Rede ist, würde
ich eine $1 [mm] \times [/mm] 1$-Matrix hier auch noch als Matrix schreiben.

> x [mm]x^t[/mm] = [mm]\vektor{x_1 \\ x_2 \\\vdots\\x_n} \vektor{x_1&x_2&..&x_n}= \pmat{ x_1^2 & x_1 * x_2 &..&x_1 x_n\\ x_2 x_1 & x_2^2 &..&x_2 x_n \\ \vdots\\x_n x_1 & x_n x_2 &..&x_n^2}[/mm]
>  
> Wie ist das nun mit dem Rank ??

na, das ist doch einfach, Du hast nur zu weit gerechnet, deswegen siehst
Du's gar nicht mehr:
$$x [mm] x^t=\pmat{x_1*x^t\\x_2*x^t\\.\\.\\.\\x_n*x^t}\,.$$ [/mm]

Das zeigt doch, dass jede Zeile ein Vielfaches des Zeilenvektors [mm] $x^t$ [/mm] ist. Also?

P.S.
[mm] $x_1*x^t$ [/mm] ist die Multiplikation der Skalaren [mm] $x_1$ [/mm] mit dem Zeilenvektor
[mm] $x^t\,.$ [/mm] Also nicht an irgendein "Skalarprodukt" (zwischen zwei Vektoren)
denken!

Gruß,
  Marcel

Bezug
                
Bezug
Rank, Transponierte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:40 Sa 25.08.2012
Autor: quasimo

danke,
rank ist also zweimal 1 ;)

LG,
quasimo

Bezug
                        
Bezug
Rank, Transponierte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Sa 25.08.2012
Autor: Marcel

Hallo,

> danke,
>  rank ist also zweimal 1 ;)

genau. Nur einmal hat man eine $1 [mm] \times [/mm] 1$-Matrix, das andere Mal
eine $n [mm] \times [/mm] n$-Matrix!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]