www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenReal- und Imaginärteil
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Real- und Imaginärteil
Real- und Imaginärteil < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Real- und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Sa 31.10.2015
Autor: YouMakeMeCrazy

Aufgabe
Bestimmen Sie fur die folgenden komplexen Zahlen den Imagin ¨ ¨arteil
und den Realteil:  (1-z)/(1+z)

Hallo,
ich versuche mich eben an der oben genannten Aufgabe.
Zuvor habe ich bereits zwei ähnliche Aufgaben problemlos hinbekommen, doch an dieser scheitere ich.

z=x+iy
Das hab ich dann eingesetzt.
Damit kommt man auf: [mm] \bruch{x+iy-1}{x+iy+1} [/mm]

Nun habe ich versucht mit [mm] \bruch{x-iy-1}{x-iy-1} [/mm] zu multiplizieren, was ja eigentlich nur eins ist und somit nichts verändert. In den vorherigen Aufgaben gingen damit die Brüche super zu lösen was Real- und Imaginärteil angeht, doch dieses mal komme ich ganz gleich was ich probiere auf nichts vernünftiges.

Hat jemand einen Tipp? :)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Real- und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Sa 31.10.2015
Autor: abakus


> Bestimmen Sie fur die folgenden komplexen Zahlen den Imagin
> ¨ ¨arteil
>  und den Realteil:  (1-z)/(1+z)
>  Hallo,
>  ich versuche mich eben an der oben genannten Aufgabe.
> Zuvor habe ich bereits zwei ähnliche Aufgaben problemlos
> hinbekommen, doch an dieser scheitere ich.
>
> z=x+iy
> Das hab ich dann eingesetzt.
> Damit kommt man auf: [mm]\bruch{x+iy-1}{x+iy+1}[/mm]
>  
> Nun habe ich versucht mit [mm]\bruch{x-iy-1}{x-iy-1}[/mm] zu
> multiplizieren, was ja eigentlich nur eins ist und somit
> nichts verändert. In den vorherigen Aufgaben gingen damit
> die Brüche super zu lösen was Real- und Imaginärteil
> angeht, doch dieses mal komme ich ganz gleich was ich
> probiere auf nichts vernünftiges.
>  
> Hat jemand einen Tipp? :)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
der Realteil von 1+z= 1+x+iy ist 1+x, und der Imaginärteill ist y.
Zum Erweitern brauchst du die konjugiert komplexe Zahl zu 1+z.
Sie hat den GLEICHEN Realteil (also 1+x) und den Imagoinärteil -y.
Erweitere also mit ((1+x)-iy).

Bezug
                
Bezug
Real- und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Sa 31.10.2015
Autor: YouMakeMeCrazy

Vielen Dank für die schnelle Antwort! :)

Ich habe nun mit deinem Rat erweitert, das ganze ausmultipliziert etc.

Dann komme ich auf:
[mm] \bruch{x^2+2iy+y^2-1}{x^2+2x+y^2+1} [/mm]

Da sehe ich jedoch nicht, wie ich mit dem Bruch auf deine genannten Real- und Imaginärteil komme.
Oder übersehe ich etwas?

Bezug
                        
Bezug
Real- und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Sa 31.10.2015
Autor: Thomas_Aut

Bedenke, dass der Nenner nun reell ist.


lg

Bezug
                                
Bezug
Real- und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Sa 31.10.2015
Autor: YouMakeMeCrazy

Das war mir aufgefallen, deswegen habe ich versucht den Bruch auseinander zu nehmen, sodass ich am Ende zwei Brüche habe, einen der im Zähler nur Realteile hat und einen der nur Imaginärteile hat.
Das scheint mir jedoch zu keiner Lösung zu führen, da man mit diesen Brüchen dann nichts anfangen kann.

[mm] \bruch{x^2-1+y^2}{x^2+2x+y^2+1}+\bruch{2iy}{x^2+2x+y^2+1} [/mm]

Da kann man nichts kürzen oder ausklammern was einem vorwärts bringt.

Bezug
                                        
Bezug
Real- und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Sa 31.10.2015
Autor: abakus


> Das war mir aufgefallen, deswegen habe ich versucht den
> Bruch auseinander zu nehmen, sodass ich am Ende zwei
> Brüche habe, einen der im Zähler nur Realteile hat und
> einen der nur Imaginärteile hat.
> Das scheint mir jedoch zu keiner Lösung zu führen, da man
> mit diesen Brüchen dann nichts anfangen kann.
>
> [mm]\bruch{x^2-1+y^2}{x^2+2x+y^2+1}+\bruch{2iy}{x^2+2x+y^2+1}[/mm]
>  
> Da kann man nichts kürzen oder ausklammern was einem
> vorwärts bringt.

Was heißt: "dann nichts anfangen"?
Du hast jetzt die Aufteilung in Real- und Imaginärteil.

Geht die Aufgabe irgendwie weiter?


Bezug
                                                
Bezug
Real- und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Sa 31.10.2015
Autor: YouMakeMeCrazy

Achso! :)
Ich habe jetzt krampfhaft versucht das zu vereinfach auf 1+x weil du das in deiner ersten Antwort geschrieben hast.
Das ich das so schon aufgeteilt ist war mir bewusst, aber ich ging von aus das man das noch vereinfachen kann und ich dies übersehe ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]