Rechengesetze bei Lognormvert. < Stochastik < Hochschule < Mathe < Vorhilfe
|
Ich brauche für die Optionsbewertung einer Option auf zwei Basisobjekte F und G einen Ausschnitt aus der bivariaten Lognormalverteilung, für den gilt:
G < 100-F.
Meine Idee ging in die Richtung, dass ich aus G und (100-F) eine Cross-Rate [mm] \bruch{G}{(100-F)} [/mm] bilde. Meine Frage ist nun, ob diese Cross-Rate auch lognormalverteilt ist?
Ich weiß aus der Bewertung einer Exchange-Option, dass die Cross-Rate [mm] \bruch{G}{F} [/mm] die Lognormalverteilungsprämisse erfüllt. Allerdings kenne ich mich mit den Rechenregeln der Lognormalverteilung nicht aus, weshalb ich auch um Literaturhinweise dazu dankbar bin.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Vielen Dank,
Martin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:37 Sa 11.03.2006 | Autor: | felixf |
Sali!
> Ich brauche für die Optionsbewertung einer Option auf zwei
> Basisobjekte F und G einen Ausschnitt aus der bivariaten
> Lognormalverteilung, für den gilt:
> G < 100-F.
> Meine Idee ging in die Richtung, dass ich aus G und (100-F)
> eine Cross-Rate [mm]\bruch{G}{(100-F)}[/mm] bilde. Meine Frage ist
> nun, ob diese Cross-Rate auch lognormalverteilt ist?
Im allgemeinen nein (siehe unten).
> Ich weiß aus der Bewertung einer Exchange-Option, dass die
> Cross-Rate [mm]\bruch{G}{F}[/mm] die Lognormalverteilungsprämisse
> erfüllt.
Du meinst, dass [mm] $\frac{G}{F}$ [/mm] wieder lognormal verteilt ist? Dazu musst du aber voraussetzen, dass $G$ und $F$ stochastisch unabhaengig sind (andernfalls ist es mehr oder weniger Zufall, wenn das wieder lognormalverteilt ist).
> Allerdings kenne ich mich mit den Rechenregeln der
> Lognormalverteilung nicht aus, weshalb ich auch um
> Literaturhinweise dazu dankbar bin.
Nun, du musst folgendes wissen: $X$ ist genau dann Lognormalverteilt, wenn [mm] $\log [/mm] X$ Normalverteilt ist. Und dann musst du die Rechenregeln fuer eine Normalverteilung kennen: Sind $X$ und $Y$ normalverteilt, so ist auch [mm] $\lambda [/mm] X + [mm] \mu$ [/mm] fuer [mm] $\lambda, \mu \in \IR$, $\lambda \neq [/mm] 0$ normalverteilt, und sind $X$ und $Y$ zusaetzlich unabhaengig, so ist auch $X + Y$ normalverteilt.
Daraus folgt: Sind $X$ und $Y$ lognormalverteilt, so ist auch [mm] $\lambda X^\mu$ [/mm] normalverteilt mit [mm] $\lambda [/mm] > 0$ und [mm] $\mu \neq [/mm] 0$. Sind $X$ und $Y$ unabhaengig, so ist $X Y$ lognormalverteilt.
Dies folgt ganz einfach aus den Rechenregeln des Logarithmus und den Rechenregeln fuer die Normalverteilung: [mm] $\log (\lambda X^\mu) [/mm] = [mm] \log \lambda [/mm] + [mm] \mu \log [/mm] X$, und [mm] $\log [/mm] (X Y) = [mm] \log [/mm] X + [mm] \log [/mm] Y$.
Was ganz wichtig ist: Ist $X$ lognormalverteilt, so ist $X + [mm] \mu$ [/mm] im allgemeinen nicht lognormalverteilt, es sei denn [mm] $\mu [/mm] = 0$. Das siehst du sofort, wenn du dir die Dichte von $X + [mm] \mu$ [/mm] anschaust: Bei einer lognormalverteilten ZV ist die Dichte immer erst ab dem Nullpunkt [mm] $\neq [/mm] 0$ (und zwar genau ab dort).
Aus diesem Grund wuerde es mich sehr wundern, wenn [mm] $\frac{F}{100 - G}$ [/mm] wieder lognormalverteilt waere (wobei das in Spezialfaellen natuerlich vorkommen kann): Denn [mm] $\log \frac{F}{100 - G} [/mm] = [mm] \log [/mm] F - [mm] \log(100 [/mm] - G)$, und [mm] $\log(100 [/mm] - G)$ ist nicht Lognormalverteilt.
HTH & LG Felix
|
|
|
|