www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenRechenregeln für Logarithmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Rechenregeln für Logarithmen
Rechenregeln für Logarithmen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenregeln für Logarithmen: Umkehrfunktion der e- Funktion
Status: (Frage) beantwortet Status 
Datum: 02:06 Di 11.09.2012
Autor: LuckyLucas

Aufgabe
[mm] \ln(x)+ \ln(y)= ln(e^\ln(x)+ln(y) [/mm] )

Kann mir bitte jemand erklären wie das Zusammenhängt? In meinem Buch steht nur, dass das halt der Logarithmus und die e-Funktion, bzw. die Funktion und die zugehörige Umkehrfunktion sind. Aber ich verstehe die Zwischenschritte nicht. Bzw. ich weiß nicht wie das ln vor der klammer auf der rechten Seite dahin kommt. Ich weiß dass [mm] \ln [/mm] = [mm] log_e [/mm] ist und auch wie ich einen Logarithmus bilde. Allerdings habe ich Probleme mit der e-Funktion. Nach langem Suchen habe ich jetzt auch rausgefunden, dass [mm] \ln(e)^a=a [/mm] ist. Aber so richtig durchschaubar ist das ganze für mich leider trotzdem noch nicht. Ich würde gerne an den Kern des ganzen gehen. Mir fehlen ( wie wahrscheinlich sehr offensichtlich) einige basics.
Es wäre toll wenn jemand mir die Zugehörigen Zwischenschritte zeigen könnte.

Vielen Dank schon mal für eure Hilfe!

IIch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rechenregeln für Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:39 Di 11.09.2012
Autor: UserK

Hallo

Wie Du ja weisst, ist der natürliche Logarithmus die Umkehrfunktion der Exponentialfunktion. Das bedeutet: [mm] e^{ln(z)}=z [/mm] (für z>0) und [mm] ln(e^z)=z [/mm]

Mit diesem Wissen folgt deine Gleichung sofort:
Schaue Dir die rechte Seite deiner Gleichung an " [mm] ln(e^{ln(x)+ln(y)}) [/mm] ".
Sie ist von der Struktur " [mm] ln(e^z) [/mm] " (wobei anstatt "z" hier "ln(x)+ln(y)" steht).
Wie schon erwähnt, gilt [mm] ln(e^z)=z [/mm]

Dies ist wirklich die einfachste Art und Weise, diese Gleichung zu verstehen!

Es gibt noch einige weitere wichtige Regeln zu Exponential- und Logarithmusfunktion. Diese findest Du bestimmt in deinem Buch. Auch unter Verwendung dieser Regeln lässt sich die Gleichung (umständlicher und auf unterschiedliche Arten) zeigen. Z.B. So:
[mm] ln(e^{ln(x)+ln(y)})=ln(e^{ln(x)}*e^{ln(y)})=ln(e^{ln(x)})+ln(e^{ln(y)})=ln(x)+ln(y) [/mm]
oder so:
[mm] ln(e^{ln(x)+ln(y)})=ln(e^{ln(x*y)})=ln(x*y)=ln(x)+ln(y) [/mm]
oder so:
[mm] ln(e^{ln(x)+ln(y)})=ln(e^{ln(x)}*e^{ln(y)})=ln(e^{ln(x)})+ln(e^{ln(y)})=ln(x)*ln(e)+ln(y)*ln(e)=ln(x)*1+ln(y)*1=ln(x)+ln(y) [/mm]
oder...






Bezug
                
Bezug
Rechenregeln für Logarithmen: Problem gelöst!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:58 Di 11.09.2012
Autor: LuckyLucas

Es ergibt alles Sinn!

Vielen Dank für deine schnelle Antwort so früh am Morgen!


Bezug
                
Bezug
Rechenregeln für Logarithmen: Anschlussfrage
Status: (Frage) beantwortet Status 
Datum: 05:04 Di 11.09.2012
Autor: LuckyLucas

Aufgabe
[mm]ln(e^{ln(x*y)})=ln(x*y)=ln(x)+ln(y)[/mm]

Hier verstehe ich doch noch nicht so ganz was da passiert. Kannst du mir das vielleicht noch mal genauer erklären?

Bezug
                        
Bezug
Rechenregeln für Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:25 Di 11.09.2012
Autor: angela.h.b.


> [mm]ln(e^{ln(x*y)})=ln(x*y)=ln(x)+ln(y)[/mm]
>  Hier verstehe ich doch noch nicht so ganz was da passiert.
> Kannst du mir das vielleicht noch mal genauer erklären?

Hallo,

der ln ist die Umkehrfunktion der e-Funktion, es ist also [mm] ln(e^a)=a. [/mm]
Das erklärt das erste Gleichheitzeichen.

Weiter gelten die MBLogarithmusgesetze. Es ist ln(ab)=ln(a)+ln(b), was die zweite Gleichheit erklärt.

LG Angela


Bezug
                        
Bezug
Rechenregeln für Logarithmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:52 Di 11.09.2012
Autor: Marcel

Hallo,

> [mm]ln(e^{ln(x*y)})=ln(x*y)=ln(x)+ln(y)[/mm]
>  Hier verstehe ich doch noch nicht so ganz was da passiert.
> Kannst du mir das vielleicht noch mal genauer erklären?

na, warum man das so schreibt, weiß ich auch nicht - auch, wenn es natürlich
absolut korrekt ist: Angela hat's ja erklärt.

Aber zu dem "Rechengesetz für den Logarithmus rechterhand":
Es gilt [mm] $x*y=e^{\ln(x)}*e^{\ln(y)}\,.$ [/mm] Wegen [mm] $e^{r+s}=e^r*e^s$ [/mm] folgt
[mm] $$x*y=e^{\ln(x)+\ln(y)}\,.$$ [/mm]

Andererseits ist aber auch
[mm] $$x*y=e^{\ln(x*y)}\,.$$ [/mm]

Weil die [mm] $e\,$-Funktion [/mm] injektiv ist, folgt aus [mm] $e^{\ln(x*y)}=e^{\ln(x)+\ln(y)}$ [/mm] dann
[mm] $$\ln(x*y)=\ln(x)+\ln(y)\,.$$ [/mm]

Aber Warnung:
Die Gleichung [mm] $\ln(x+y)=\ln(x)*\ln(y)$ [/mm] ist (i.a.) falsch!!


Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]