www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRechnen mit Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Rechnen mit Matrizen
Rechnen mit Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechnen mit Matrizen: Bew. durch vollst. Induktion
Status: (Frage) beantwortet Status 
Datum: 19:02 Mi 14.12.2005
Autor: oeli1985

Aufgabe
Sei K ein Körper, n [mm] \in \IN [/mm] und A = ( [mm] a_{ij}) \in [/mm] M(nxn, K) die Matrix mit

[mm] a_{ij}=\begin{cases} 1, & \mbox{für } j=i+1 \\ 0, & \mbox{sonst } \end{cases} [/mm]

(i) Berechnen sie A² und A³
(ii) Formulieren sie eine Vermutung für den Wert von

[mm] A^{k} [/mm] := A [mm] \*A \*... \*A [/mm] (mit k-Faktoren)

(mit k [mm] \in \IN) [/mm] und beweisen sie diese mittels vollständiger Induktion nach k.

zu (i)

( [mm] b_{ij}) [/mm] = A²

[mm] b_{ij}=\begin{cases} 1, & \mbox{für } j=i+2 \\ 0, & \mbox{sonst } \end{cases} [/mm]

( [mm] c_{ij}) [/mm] = A³

[mm] c_{ij}=\begin{cases} 1, & \mbox{für } j=i+3 \\ 0, & \mbox{sonst } \end{cases} [/mm]

Sind meine Lösungen dazu richtig?

zu (ii)

Vermutung: [mm] (d_{ij}) [/mm] :=  [mm] A^{k} [/mm] dann:

[mm] d_{ij}=\begin{cases} 1, & \mbox{für } j=i+k \\ 0, & \mbox{sonst } \end{cases} [/mm]

z.zg.:
1. [mm] (d_{ii+k}) [/mm] =  [mm] \summe_{m=1}^{k} (a_{ii+m})^{m} [/mm] = 1
2. Für alle anderen j ist [mm] a_{ij} [/mm] = 0

(wobei i = 1, ... ,n)

Problem:

Zu 1. habe ich alles gezeigt, aber ich weiss nicht, wie ich alle anderen [mm] a_{ij} [/mm] als Summe ausdrücken soll!?

Ich schaffe bisher lediglich entweder eine Spalte oder eine Diagonale der Matrix auszudrücken.

Wer kann mir helfen? Am liebsten wär mir, wenn mir jemand entsprechende Summe angibt und mir dazu erklären kann wieso diese Summe alles ausdrückt. Ich habe nämlich wirklich keine Idee mehr.

DANKE schon mal.

        
Bezug
Rechnen mit Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Do 15.12.2005
Autor: angela.h.b.


> Sei K ein Körper, n [mm]\in \IN[/mm] und A = ( [mm]a_{ij}) \in[/mm] M(nxn, K)
> die Matrix mit
>  
> [mm]a_{ij}=\begin{cases} 1, & \mbox{für } j=i+1 \\ 0, & \mbox{sonst } \end{cases}[/mm]
>  
> (i) Berechnen sie A² und A³
>  (ii) Formulieren sie eine Vermutung für den Wert von
>  
> [mm]A^{k}[/mm] := A [mm]\*A \*... \*A[/mm] (mit k-Faktoren)
>  
> (mit k [mm]\in \IN)[/mm] und beweisen sie diese mittels
> vollständiger Induktion nach k.
>  zu (i)
>  

Hallo,

Deine Ergebnisse für  [mm] A^2 [/mm] und [mm] A^3 [/mm] sind richtig.

Auch die Vermutung für k stimmt, ich bürste die jetzt etwas, damit man es bei der Induktion leichter hat.

>  
> zu (ii)
>  

Vermutung: [mm] A^{k}:=(a_{ij}^{(k)}) [/mm]

mit [mm] a_{ij}^{(k)}=\begin{cases} 1, & \mbox{für } j=i+k \\ 0, & \mbox{sonst } \end{cases}[/mm].

k  [mm] \to [/mm] k+1:

Es ist [mm] (a_{ij}^{(k+1)}) [/mm] = [mm] A^{k+1} [/mm] = [mm] AA^k [/mm] = [mm] (a_{ij}^{(1)})(a_{ij}^{(k)}) [/mm] = ( [mm] \summe_{l=1}^{n}a_{il}^{(1)}a_{lj}^{(k)}) [/mm]

Nun muß man bedenken, daß [mm] a_{il}^{(1)} [/mm] immer =0 ist, außer für l=i+1, und [mm] a_{ij}^{(k)} [/mm] ist nach Induktionsvoraussetzung immer =0 außer für l=j-k. Also

ist für [mm] i+1\not=j-k [/mm]
[mm] a_{ij}^{(k+1)}:= \summe_{l=1}^{n}a_{il}^{(1)}a_{lj}^{(k)}=0 [/mm]

und für i+1=j-k  <==> i+(k+1)=j
[mm] a_{ij}^{(k+1)}=a_{i,(i+(k+1))}^{(k+1)}= \summe_{l=1}^{n}a_{il}^{(1)}a_{l,(i+(k+1))}^{(k)}=... [/mm]

(es bleibt nur der Summand für l=i+1, alles andere wird =0)

[mm] ...=a_{i,(i+1)}^{(1)}a_{i+1,(i+(k+1))}^{(k)}=1 [/mm]

Gruß v. Angela


Bezug
                
Bezug
Rechnen mit Matrizen: Super
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Do 15.12.2005
Autor: oeli1985

Jetzt ist alles klar, DANKESCHÖN!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]