www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesRechnen mit Potenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - Rechnen mit Potenzen
Rechnen mit Potenzen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechnen mit Potenzen: Hilfestellung zur Lösung
Status: (Frage) beantwortet Status 
Datum: 19:44 Mo 22.08.2005
Autor: CindyN

HalliHallo,

habe mal wieder eine Frage zu einer Aufgabe, die da lautet:

(4²)-²*   [mm] \vektor{-1 \\ 2} [/mm] * (-8)³ * (16-²)² *   [mm] \vektor{-1 \\ 2} [/mm] hoch 4 *  [mm] \pmat{ 9 } [/mm] hoch 8

das Ergebnis ist  
[mm] \bruch{1}{16384} [/mm]

Wie komm ich auf das Ergebnis, ich weiß ja das Ansätze von Lösungswegen gefordert sind, aber ich hab nicht den blassesten Schimmer wo ich überhaupt anfangen muss :(



        
Bezug
Rechnen mit Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Mo 22.08.2005
Autor: holy_diver_80

Halloo Cindy,

Die Sache ist einfacher als Du denkst. Berechne einfach jeden Faktor einzeln als Bruch, und multipliziere das Ganze aus.

Etwa: [mm] $(4^2)^{-2}$ [/mm] = [mm] $16^{-2}$ [/mm] = [mm] $\bruch{1}{256}$ [/mm]
[mm] $\vektor{ -1 \\ 2 }$ [/mm] = [mm] $\bruch{(-1)*(-2)}{2!}$ [/mm] = [mm] $\bruch{2}{2}$ [/mm] = 1

Bei mir ergibt sich übrigens ein Wert von etwa -1313,68.

Liebe Grüße,
Holy Diver

Bezug
        
Bezug
Rechnen mit Potenzen: Aufgabe etwas unklar
Status: (Antwort) fertig Status 
Datum: 20:29 Mo 22.08.2005
Autor: Loddar

Hallo Cindy!


Ich kann mich nur meinem Vorrednerschreiber anschließen ...

Ansonsten versuche doch mal, alles auf 2er-Potenzen umzuschreiben und zusammenzufassen.

Zum Beispiel:

[mm] $\left(4^{-2}\right)^2 [/mm] \ = \ [mm] 4^{-2*2} [/mm] \ = \ [mm] 4^{-4} [/mm] \ = \ [mm] \left(2^2\right)^{-4} [/mm] \ = \ [mm] 2^{2*(-4)} [/mm] \ = \ [mm] 2^{-8}$ [/mm]


Ich denke aber, dass Du bei diesen großen Klammerausdrücken Brüche meinst, oder?

[mm] $\vektor{-1 \\ 2}$ [/mm] soll heißen [mm] $\bruch{-1}{2}$ [/mm] ??


Meinst Du diese Rechnung hier?

[mm] $\left(4^2\right)^{-2}*\left(-\bruch{1}{2}\right)*(-8)^3*\left(16^{-2}\right)^2*\left(-\bruch{1}{2}\right)^4* [/mm] ...$

Nur die letzten beiden Ziffern/Zahlen kann ich nicht ganz zuordnen.
Was meinst Du denn damit?

Bis dahin ergibt die obige Rechnung nämlich: [mm] $\bruch{1}{4096}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Rechnen mit Potenzen: Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:58 Mi 24.08.2005
Autor: CindyN

Hallo,

hab noch ein wenig Probleme mit der Darstellung der Aufgaben,  so alle Darstellungsmöglichkeiten sind auch gar nicht unten aufgeführt... Aber schau mal:

  [mm] \left(4^2\right)^{-2}\cdot{}\left(-\bruch{1}{2}\right)\cdot{}(-8)^3\cdot{}\left(16^{-2}\right)^2\cdot{}\left(-\bruch{1}{2}\right)^4\cdot{} [/mm]

Also zu dem ersten Bruch
[mm] \left(-\bruch{1}{2}\right) [/mm]  kommt noch ein Hoch -5
und hinter dem letzten Bruch [mm] \left(-\bruch{1}{2}\right)^4\cdot{} [/mm] kommt dann noch eine (9 mit Hoch 0) und dann hoch 8

ich hoff du siehst durch?
LG

Bezug
                        
Bezug
Rechnen mit Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mi 24.08.2005
Autor: CindyN

Hallo Loddar,

[mm] \left(4^2\right)^{-2}\cdot{}\left(-\bruch{1}{2}\right)^{-5}\cdot{}(-8)^3\cdot{}\left(16^{-2}\right)^2\cdot{}\left(-\bruch{1}{2}\right)^4\cdot{}\left(9^0\right)^8 [/mm]

So, jetzt hab ich´s *freu*

Und da wurde als Ergebnis im Unterricht  [mm] \bruch{1}{16384} [/mm]

Aber wie komm ich da hin? Was muss ich machen? Klammern auflösen?
Geh einfach davon aus, das ich kaum noch Grundkenntnisse hab (traurig aber wahr)

Liebe Grüße
und schon mal vielen lieben Dank

Bezug
                                
Bezug
Rechnen mit Potenzen: schrittweise ...
Status: (Antwort) fertig Status 
Datum: 20:45 Mi 24.08.2005
Autor: Loddar

Hallo Cindy!


[mm]\left(4^2\right)^{-2}\cdot{}\left(-\bruch{1}{2}\right)^{-5}\cdot{}(-8)^3\cdot{}\left(16^{-2}\right)^2\cdot{}\left(-\bruch{1}{2}\right)^4\cdot{}\left(9^0\right)^8[/mm]


Zunächst werden wir mal die Klammern auflösen mit folgenden beiden MBPotenzgesetzen:

[mm] $(a*b)^m [/mm] \ = \ [mm] a^m [/mm] * [mm] b^m$ [/mm]   bzw.   [mm] $\left(a^m\right)^n [/mm] \ = \ [mm] a^{m*n}$ [/mm]


[mm]4^{2*(-2)}\cdot{}(-1)^{-5}*\left(\bruch{1}{2}\right)^{-5}\cdot{}(-1)^3*8^3\cdot{}16^{-2*2}\cdot{}\left(-1\right)^4*\left(\bruch{1}{2}\right)^4\cdot{}9^{0*8}[/mm]


Nun die einzelnen Exponenten (= Hochzahlen) sowie die Klammern mit den $(-1)_$ ausrechnen:

[mm]4^{-4}\cdot{}(-1)*\left(\bruch{1}{2}\right)^{-5}\cdot{}(-1)*8^3\cdot{}(16^{-4}\cdot{}\left(+1\right)*\left(\bruch{1}{2}\right)^4\cdot{}9^{0}[/mm]


Nun zwei weitere MBPotenzgesetze:

[mm] $a^{-n} [/mm] \ = \ [mm] \left(\bruch{1}{a}\right)^n [/mm] \ = \ [mm] \bruch{1}{a^n}$ [/mm]   sowie   [mm] $a^0 [/mm] \ = \ 1$   für   [mm] $a\not=0$ [/mm]

[mm]\bruch{1}{4^4}\cdot{}(-1)*2^5\cdot{}(-1)*8^3\cdot{}\bruch{1}{16^4}\cdot{}(+1)*\left(\bruch{1}{2}\right)^4\cdot{}1[/mm]


Nun fassen wir mal die ganzen $+1_$ und $-1_$ zusammen:

[mm]\bruch{1}{4^4}\cdot{}2^5\cdot{}8^3\cdot{}\bruch{1}{16^4}*\left(\bruch{1}{2}\right)^4[/mm]

[mm]\bruch{1}{4^4}\cdot{}2^5\cdot{}8^3\cdot{}\bruch{1}{16^4}*\bruch{1}{2^4}[/mm]


Nun werden wir alles auf Zweipotenzen umschreiben:

$4 \ = \ [mm] 2^2$ [/mm]

$8 \ = \ [mm] 2^3$ [/mm]

$16 \ = \ [mm] 2^4$ [/mm]


[mm]\bruch{1}{\left(2^2\right)^4}\cdot{}2^5\cdot{}\left(2^3\right)^3\cdot{}\bruch{1}{\left(2^4\right)^4}*\bruch{1}{2^4}[/mm]

[mm]\bruch{1}{2^{2*4}}\cdot{}2^5\cdot{}2^{3*3}\cdot{}\bruch{1}{2^{4*4}}*\bruch{1}{2^4}[/mm]

[mm]\bruch{1}{2^8}\cdot{}2^5\cdot{}2^9\cdot{}\bruch{1}{2^{16}}*\bruch{1}{2^4}[/mm]


Und nun mal alles auf einen Bruchstrich:

[mm]\bruch{2^5*2^9}{2^8*2^{16}*2^4}[/mm]

[mm]\bruch{2^{5+9}}{2^{8+16+4}}[/mm]

[mm]\bruch{2^{14}}{2^{28}}[/mm]

[mm]2^{14-28}[/mm]

[mm]2^{-14}[/mm]

[mm]\bruch{1}{2^{14}}[/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]