www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeRechteck in Halbkreis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - Rechteck in Halbkreis
Rechteck in Halbkreis < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechteck in Halbkreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Di 27.06.2006
Autor: EdmondDantes

Aufgabe
Einem Halbkreis mit dem Radius r soll ein Rechteck mit möglichst großem Flächeninhalt einbeschrieben werden. Wie groß sind die Seiten des Rechtecks?

Es ist ziemlich lange her, dass ich mit Extremwertaufgeben hantiert habe und entsprechend hab ich auch (fast) keine Ahnung mehr wie das funktionierte.

Ich bin das mal wie folgt angegangen:

[Dateianhang nicht öffentlich]

[mm] A_{\Box}\to [/mm] max
[mm] A_{\Box}=2*s*t [/mm]
[mm] s^{2}=r^{2}-t^{2} \Rightarrow A_{\Box}=2*(r^{2}-t^{2})*t [/mm]

[mm] A_{\Box}^{'}(t) [/mm] ist dann aber [mm] (2r^{2} [/mm] - [mm] 6t^{2}) [/mm] und ich frage mich wie ich weiter vorgehen kann. r ist hier ja als Konstante Größe zu betrachten und ich weiß nun, dass die Gleichung [mm] A_{\Box}=2*(r^{2}-t^{2})*t [/mm] bei [mm] (2r^{2} [/mm] - [mm] 6t^{2}) [/mm] eine waagerechte Tangente hat. [mm] A_{\Box}^{''} [/mm] ist dann aber -12t, ist also immernoch von t abhängig. Das Krümmungsverhalten lässt sich so doch nicht eindeutig festlegen. Erst [mm] A_{\Box}^{'''} [/mm] schließlich liefert -12 als Wert, der auf ein Maximum schließen ließe.

...ich wäre sehr verbunden, wenn mir wer weiterhelfen könnte, hab ich was grundlegend falsch gemacht? Oder fehlt was in meiner Erinnerung an diese Extremwertaufgaben (könnte leicht möglich sein ;-) )?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Rechteck in Halbkreis: Erläuterungen
Status: (Antwort) fertig Status 
Datum: 15:47 Di 27.06.2006
Autor: Roadrunner

Hallo EdmondDantes!



> [mm]s^{2}=r^{2}-t^{2} \Rightarrow A_{\Box}=2*(r^{2}-t^{2})*t[/mm]

Hier hast Du eine Wurzel unterschlagen, da in der Flächenformel nur $s_$ steht und nicht [mm] $s^2$ [/mm] :

[mm] $A_{\Box} [/mm] \ = \ [mm] 2*\wurzel{r^{2}-t^{2}}*t$ [/mm]

  

> r ist hier ja als Konstante Größe zu betrachten

[ok]


> und ich weiß nun, dass die Gleichung [mm]A_{\Box}=2*(r^{2}-t^{2})*t[/mm]
> bei [mm](2r^{2}[/mm] - [mm]6t^{2})[/mm] eine waagerechte Tangente hat.

Du musst aber die Gleichung (ich bleibe mal bei dieser falschen Ableitung) [mm] $2r^2-6t^2 [/mm] \ [mm] \red{= \ 0}$ [/mm] auch noch nach $t \ = \ ...$ umstellen...


> [mm]A_{\Box}^{''}[/mm] ist dann aber -12t, ist also immernoch von t abhängig.

... und dann hier in die 2. Ableitung einsetzen. Damit es sich um ein Maximum handelt, muss gelten:  [mm] $A''(t_e) [/mm] \ [mm] \red{<} [/mm] \ 0$ (hinreichendes Kriterium).


Gruß vom
Roadrunner


Bezug
                
Bezug
Rechteck in Halbkreis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Di 27.06.2006
Autor: EdmondDantes

Ok, ich hab mich wie befürchtet einfach nur dumm angestellt, gepaart mit derben Erinnerungslücken und müdigkeitsbedingten Fehlzündungen kam das dann dabei raus ;-) danke Roadrunner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]