www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraReelle Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Reelle Körper
Reelle Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reelle Körper: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:55 Fr 12.12.2008
Autor: Wasserfall

Aufgabe
Sei R ein reeller Körper und t transzendent im Bezug auf R.
zz.: R(t) ist reell.

Hat jemand eine Idee bzw. einen Tipp wie ich zum Ziel kommen könnte?

Vielen Dank schonmal!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Reelle Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Fr 12.12.2008
Autor: Al-Chwarizmi


> Sei R ein reeller Körper und t transzendent im Bezug auf R .
> zu zeigen: R(t) ist reell.
> Hat jemand eine Idee bzw. einen Tipp wie ich zum Ziel
> kommen könnte?
>  
> Vielen Dank schonmal!


hallo Wasserfall,

ich musste zuerst einmal nachschlagen, was man
unter einem "reellen Körper" eigentlich versteht.
Die Definition, die ich gefunden habe, lautet:

"Ein Körper heißt formal reell (oder nur reell),
wenn -1 sich nicht als endliche Summe von
Quadraten schreiben lässt."


Gäbe es in R(t) eine solche Darstellung von -1
als endliche Summe von Quadraten, dann müsste
in dieser Summe t tatsächlich vorkommen, denn
weil R selbst ein reeller Körper ist, gibt es
keine Quadratsumme mit dem Wert -1, bei der nur
reelle Zahlen benützt werden. Die entstandene
Gleichung wäre eine algebraische Gleichung über R
mit der Lösung t, was aber nicht möglich ist,
falls t tatsächlich transzendent bezüglich R ist.


Gruß    al-Chw.

Bezug
                
Bezug
Reelle Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Fr 12.12.2008
Autor: Wasserfall

Danke für die schnelle Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]