Reelles Integral via Residuum < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo
Ich möchte das Integral
[mm] \integral_{0}^{\infty}{ \bruch{dt}{1+t^6}}
[/mm]
berechnen.
Nun wende ich hier natürlich den Residuensatz an, sprich das Kurvenintegral längs einer geschlossenen Jordankurve ist 2 [mm] \pi [/mm] i * [mm] \summe_{}^{} [/mm] Res
Wären die Grenzen [mm] \pm \infty, [/mm] wäre es auch kein größeres Problem, da ich einen Halbkreis in der oberen komplexen Halbebene ziehe, dessen Integral gegen Null geht und so mein gewünschtes reelles übrig bleibt.
Im vorliegenden Fall müsste ich aber die imaginäre Achse von Null bis [mm] R\rightarrow\infty [/mm] entlanglaufen, stoße dabei aber auf eine isolierte Singularität, nämlich auf die zweite der sechs Einheitswurzeln.
Wie kann ich hier vorgehen?
Grüße.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:18 Sa 24.03.2007 | Autor: | prfk |
Moin
Vielleicht kommst du mit einer Partialbruchzerlegung statt Residuensatz weiter. Ich hab das jetzt nicht geprüft, ob sich da gescheite Brüche ergeben, aber n Versuch isses vielleicht Wert :)
|
|
|
|
|
Hi,
also Partialbruchzerlegung hilft hier leider auch nicht weiter.
[mm] $$\int\bruch{1}{1+t^6}\,\mathrm{d}t$$
[/mm]
Derive sagt folgendes:
[mm] \texttt{If }n>0\texttt{ is even and }0\le m
[mm] $$\int\bruch{x^m}{a+bx^n}\Rightarrow \bruch{1}{n*\left(a^{\bruch{1}{n}}\right)^{n-(m+1)}*\left(b^{\bruch{1}{n}}\right)^{m+1}}*\summe_{k=1}^{\bruch{n}{2}}\left(2* \arctan\left(\bruch{\bruch{x*b^{\bruch{1}{n}}}{a^{\bruch{1}{n}}}-\cos\left(\bruch{2k-1}{n}*\pi\right)}{\sin\left(\bruch{2k-1}{n}*\pi\right)}\right)*\sin\left(\bruch{2k-1}{n}*\left(m+1\right)*\pi\right)-\ln\left(x^2*b^{\bruch{2}{n}}-2x*a^{\bruch{1}{n}}*b^{\bruch{1}{n}}*\cos\left(\bruch{2k-1}{n}*\pi\right)+a^{\bruch{2}{n}}\right)*\cos\left(\bruch{2k-1}{n}*\left(m+1\right)*\pi\right)\right)$$
[/mm]
Dann folgen noch einige Vereinfachungen der trigonometrischen Funktionen, was folgendes Ergebnis liefert:
[mm] $$\int\bruch{1}{1+t^6}\,\mathrm{d}t=\bruch{\arctan\left(2t-\sqrt{3}\right)}{6}+\bruch{\arctan\left(2t+\sqrt{3}\right)}{6}+\bruch{\arctan\left(t\right)}{3}-\bruch{\sqrt{3}*\ln\left(\bruch{t^2-\sqrt{3}t+1}{t^2+\sqrt{3}t+1}\right)}{12}$$
[/mm]
Von 0 bis [mm] \infty [/mm] ergibt es dann:
[mm] $$\bruch{1}{3}\pi$$
[/mm]
Weiß jemand genaueres über die oben genannte Beziehung?
Grüße, Stefan.
|
|
|
|
|
...Und vor allem, ob es einen "händischen" Weg gibt?!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:23 Mo 26.03.2007 | Autor: | Infinit |
Hallo Willkommen,
hier hilft ein kleiner Trick. Der Integrand ist gerade und demzufolge ist der Wert des Integrals von 0 bis Unendlich genau der Hälfte des Wertes von minus Unendlich bis Unendlich. Dann lässt sich wieder einfach eine geschlossene Kurve erzeugen, so dass der Residuensatz anwendbar ist. Der obere Halbkreis liefert für x gegen Unendlich keinen Beitrag zum Gesamtintegral.
Viele Grüße,
Indfinit
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:16 Mo 26.03.2007 | Autor: | felixf |
Hallo Willkommen!
> Ich möchte das Integral
>
> [mm]\integral_{0}^{\infty}{ \bruch{dt}{1+t^6}}[/mm]
>
> berechnen.
>
> Nun wende ich hier natürlich den Residuensatz an, sprich
> das Kurvenintegral längs einer geschlossenen Jordankurve
> ist 2 [mm]\pi[/mm] i * [mm]\summe_{}^{}[/mm] Res
>
> Wären die Grenzen [mm]\pm \infty,[/mm] wäre es auch kein größeres
> Problem, da ich einen Halbkreis in der oberen komplexen
> Halbebene ziehe, dessen Integral gegen Null geht und so
> mein gewünschtes reelles übrig bleibt.
Genau das kannst du hier auch machen: es ist naemlich [mm] $\int_{-\infty}^0 \frac{1}{1 + t^6} [/mm] dt = [mm] \int_0^\infty \frac{1}{1 + t^6} [/mm] dt$ (einmal passend Substitutieren und du hast das da stehen), insbesondere gilt also [mm] $\int_0^\infty \frac{1}{1 + t^6} [/mm] dt = [mm] \frac{1}{2} \int_{-\infty}^\infty \frac{1}{1 + t^6} [/mm] dt$.
LG Felix
|
|
|
|