www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Regel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Regel
Regel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:26 Sa 07.10.2006
Autor: engel

Hallo!

Es gibt ja die Regel:

[mm]P(A) = P(A\cap B) + P\left(A\cap\overline{B}\right)[/mm]

Kann man das auch irgendwie umstellen, dass A quer dort steht?

Wie?

Bitte helft mir schnell, danke!!

        
Bezug
Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 Sa 07.10.2006
Autor: Karl_Pech

Hallo engel,


> Hallo!
>  
> Es gibt ja die Regel:
>  
> [mm]P(A) = P(A\cap B) + P\left(A\cap\overline{B}\right)[/mm]
>  
> Kann man das auch irgendwie umstellen, dass A quer dort
> steht?


Also wenn du [mm]P\left(\overline{A}\right)[/mm] haben willst, mußt du von der 1 ja nur den rechten Term abziehen:


[mm]P\left(\overline{A}\right) = 1-P(A\cap B) - P\left(A\cap\overline{B}\right)[/mm]


Wenn du aber nach Äquivalenzumformungen suchst, um eine Menge durch Wahrscheinlichkeiten auszudrücken(, also sowas wie [mm]\overline{A} = \dotsb P(\dotsb)\dotsb[/mm]), so denke ich, daß das unmöglich ist, da ja [mm]P[/mm] jeder Ereignismenge, welche Teilmenge des Grundraums [mm]\Omega[/mm] ist, eine bestimmte positive reelle Zahl zuordnet. Um das Obige zu bekommen müßte man also die Umkehrfunktion [mm]P^{-1}[/mm] davon betrachten, aber selbst bei einem einfachen Fall mit einem Laplace-Würfel gäbe es schon Probleme; Zwar kann man jedem dieser Elementarereignisse [mm]\{1\},\dotsc,\{6\}[/mm] die W'keit [mm]\tfrac{1}{6}[/mm] zuordnen, aber [mm]P^{-1}\left(\tfrac{1}{6}\right)[/mm] ist [mm]\{\{1\},\dotsc,\{6\}\}[/mm] und wie will man jetzt noch unterscheiden können, welches Elementarereignis eigentlich vorher gemeint war, wenn man z.B. vorher [mm]\overline{A} := \{3\}[/mm] gesetzt hat?



Viele Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]