www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteRegel von l'Hospital
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Regel von l'Hospital
Regel von l'Hospital < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regel von l'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:42 Do 26.01.2012
Autor: dudu93

Hallo, ich habe etwas Schwierigkeiten, den Grenzwert nach unendlich für folgende Funktion zu berechnen:

f(x) = lim x->unendlich [mm] (x-1)e^{-1/2x^2+x} [/mm]

Da x nach unendlich strebt, würde der Ausdruck ja unendlich * unendlich, also unbestimmt sein.

Dazu nutzt man die Regel von l'hospital, um durch Ableitungen einen Grenzwert zu bestimmen.

Doch diese Funktion muss man ja anfangs umformen, damit sie als Bruch steht, habe ich gehört.

Kann ich es so schreiben?

[mm] ln(-1/2x^2+x)(x-1) [/mm]

= [mm] \bruch{1}{-1/2x^2+x} [/mm] (x-1)

= [mm] \bruch{x-1}{-1/2x^2+x} [/mm] <- Das dann ableiten (Zähler & Nenner separat - nach l'Hospital)

= [mm] \bruch{1}{-x+1} [/mm]

= [mm] \bruch{1}{- unendlich} [/mm]

= 0

Das Ergebnis stimmt laut Lösung. Doch ist der Rechenweg so richtig?

LG

        
Bezug
Regel von l'Hospital: erst umformen
Status: (Antwort) fertig Status 
Datum: 23:49 Do 26.01.2012
Autor: Loddar

Hallo dudu!


Wie kommst Du aus heiterem Himmel auf Deinen Term mit dem Logarithmus? [aeh]

Du kannst hier den (ursprünglichen) Term wie folgt umformen, um einen Bruch zu erhalten:

[mm](x-1)*e^{-\bruch{1}{2}x^2+x} \ = \ (x-1)*e^{-\left(\bruch{1}{2}x^2-x\right)} \ = \ (x-1)*\left[e^{\bruch{1}{2}x^2-x}\right]^{-1} \ = \ (x-1)*\bruch{1}{e^{\bruch{1}{2}x^2-x}} \ = \ \bruch{x-1}{e^{\bruch{1}{2}x^2-x}}[/mm]


Gruß
Loddar

Bezug
                
Bezug
Regel von l'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:53 Do 26.01.2012
Autor: dudu93

Danke für die schnelle Antwort.

Stimmt ja, das Minus kann man dann als Exponenten schreiben.

Also steht am Ende das hier:

[mm] \bruch{1}{e^{1/2x^2-x}*x-1} [/mm]

Und der Nenner geht gegen unendlich. Also ist der GW = 0. Richtig so?

Bezug
                        
Bezug
Regel von l'Hospital: Klammern!
Status: (Antwort) fertig Status 
Datum: 23:59 Do 26.01.2012
Autor: Loddar

Hallo Dudu!


Wenn Du dem Nenner noch ein Paar Klammern spendierst, stimmt es. [ok]


Gruß
Loddar


Bezug
                        
Bezug
Regel von l'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Fr 27.01.2012
Autor: leduart

Hallo
wie begrondest du dass
[mm] e^{1/2x^2-x}=\bruch{e^{1/2x^2}}{e^x} [/mm] gegen [mm] \infty [/mm] strebt? Zähler gegen [mm] \infty, [/mm] Nenner auch?
Das Ergebnis ist allerdings richtig, aber da steht sicher nicht ohne Grund [mm] e^{1/2x^2-x} [/mm] und nicht nur [mm] e^{1/2x^2} [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]