www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisRegelfkt und Dirichlet
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Regelfkt und Dirichlet
Regelfkt und Dirichlet < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelfkt und Dirichlet: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:20 Sa 22.04.2006
Autor: DeusRa

Aufgabe
Geben Sie eine Folge von Regelfunktionen [mm] $f_n [/mm] :[0,1] [mm] \to \IR$ [/mm] an, welche punktweise gegen die Dirichletfunktion
[mm] $f:[0,1]\to \IR$ [/mm] ; [mm] f(x)=\begin{cases} 0, & \mbox{falls } x \not\in \IQ \mbox{ } \\ 1, & \mbox{falls } x\in \IQ \mbox{ } \end{cases} [/mm]
konvergiert.
Hinweis: Wählen Sie eine Abzählung [mm] (r_n )_{n\in \IN} [/mm] von [mm] \IQ [/mm] und konstruieren Sie dadurch die Funktionen [mm] f_n. [/mm]

Hallo,
mein Problem bei der Aufgabe ist, dass ich nicht genau weiß was mit der Abzählung von [mm] \IQ [/mm] gemeint ist.
Ich habe mir gedacht, dass eine Abzählung wohl eine Bijektion zwischen [mm] \IN [/mm] und [mm] \IQ [/mm] ist.
Also: r: [mm] \IN \to \IQ. [/mm]
Und jetzt muss ich eine Folge [mm] (t)_n [/mm] von Treppenfunktionen finden, mit der Eigenschaft, dass [mm] f_n [/mm] = [mm] \limes_{n\rightarrow \infty} t_n. [/mm]

Aber ab jetzt wüsste ich nicht weiter.
Wie soll ich diese Infos kombinieren ???

Wäre über Tipps dankbar.



        
Bezug
Regelfkt und Dirichlet: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Sa 22.04.2006
Autor: andreas

hi

überlege dir mal, was mn mit der funktionenfolge

[m] f_n(x) = \begin{cases} 1 & \textrm{ falls } x \in \{q_1, ..., q_n \} \\ 0 & \textrm{ sonst} \end{cases} [/m]


anfangen könnte.


grüße
andreas

Bezug
                
Bezug
Regelfkt und Dirichlet: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Sa 22.04.2006
Autor: DeusRa

Danke schon mal.
Also: [mm] r_n:={q_1, ..., q_n\}. [/mm]
[mm] f_n(x) [/mm] = [mm] \begin{cases} 1 & \textrm{ falls } x \in r_n \\ 0 & \textrm{ sonst} \end{cases} [/mm] $
[mm] \Rightarrow f_n(x) [/mm] = [mm] \begin{cases} \limes_{n\rightarrow\infty} r_n, & \mbox{für } x\in r_n \mbox{ } \\ \limes_{n\rightarrow\infty} x, & \mbox{für } sonst. \mbox{ } \end{cases} [/mm]

Wäre das als Ansatz ok ?

Bezug
                        
Bezug
Regelfkt und Dirichlet: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Sa 22.04.2006
Autor: andreas

hi

habe mich vorhin etwas mit den bezeichnungen verrant, also der deutlichkeit halber: [mm] $(q_n)_{n \in \mathbb{N}}$ [/mm] soll eine abzählungen der rationalen zahlen in $[0, 1]$ sein (die hieß in der aufgabenstellung [mm] $(r_n)_{n \in \mathbb{N}}$) [/mm] aber das ist dir ja wohl aufgefallen.

>  Also: [mm]r_n:={q_1, ..., q_n\}.[/mm]
>  [mm]f_n(x)[/mm] = [mm]\begin{cases} 1 & \textrm{ falls } x \in r_n \\ 0 & \textrm{ sonst} \end{cases}[/mm]
> $
>  [mm]\Rightarrow f_n(x)[/mm] = [mm]\begin{cases} \limes_{n\rightarrow\infty} r_n, & \mbox{für } x\in r_n \mbox{ } \\ \limes_{n\rightarrow\infty} x, & \mbox{für } sonst. \mbox{ } \end{cases}[/mm]
>  
> Wäre das als Ansatz ok ?

also mir ist etwas unklar, was du mit der zweiten darstellng von [mm] $f_n$ [/mm] willst. der wert in der oberen alternative hängt nicht mehr von $n$ ab, aber der bereich, auf dem er angenommen wird schon? und was ist [mm] $\lim_{n \to \infty} [/mm] x$? das $x$ hängt doch nicht von $n$ ab?


also nimm lieber die obere darstellung der [mm] $f_n$ [/mm] und zeige, dass diese punktweise gegen $f$ konvergiert. nimm also ein festes $x$ her (fallunterscheidung ob dieses rational oder irrational) und zeige, dass es für jedes [mm] $\varepsilon [/mm] >0$ ein $N [mm] \in \mathbb{N}$ [/mm] gibt, so dass sich für alle $n [mm] \geq [/mm] N$ die werte [mm] $f_n(x)$ [/mm] und $f(x)$ um weniger als [mm] $\varepsilon$ [/mm] unterscheiden.


probiere das mal und melde dich dann wieder.


grüße
andreas

Bezug
                                
Bezug
Regelfkt und Dirichlet: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:11 So 23.04.2006
Autor: DeusRa

Ok, also ich habe es jetzt folgendermaßen gemacht.
Habe natürlich dieses [mm] f_n [/mm] gewählt.
$ [mm] f_n(x) [/mm] = [mm] \begin{cases} 1 & \textrm{ falls } x \in \{q_1, ..., q_n \} \\ 0 & \textrm{ sonst} \end{cases} [/mm] $

Also,
zz: [mm] $\forall x\in \IQ [/mm] ($ oder $x [mm] \not\in \IQ) \forall \varepsilon [/mm] > 0 [mm] \exists n_0 \in \IN, [/mm] s.d. [mm] \forall n\ge n_0: |f_n(x)-f(x)|<\varepsilon$ [/mm]

Somit:
Sei [mm] $\varepsilon [/mm] > 0$ gegeben
1. Fall: Sei [mm] x\in \IQ \Rightarrow |f_n(x)-f(x)|=|1-1|=0< \varepsilon. [/mm]
2. Fall: Sei [mm] x\not\in \IQ \Rightarrow |f_n(x)-f(x)|=|0-0|=0 [/mm] < [mm] \varepsilon. [/mm]

Drei Fragen:
(i) Richtig so ???
(ii) Muss ich noch zeigen, dass es nicht gleichmäßig konvergiert ???.
(iii) Muss ich denn nicht noch zeigen, dass [mm] f_n [/mm] eine Regelfunktion ist ???


Bezug
                                        
Bezug
Regelfkt und Dirichlet: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 Mi 26.04.2006
Autor: andreas

hi

> Ok, also ich habe es jetzt folgendermaßen gemacht.
>  Habe natürlich dieses [mm]f_n[/mm] gewählt.
>  [mm]f_n(x) = \begin{cases} 1 & \textrm{ falls } x \in \{q_1, ..., q_n \} \\ 0 & \textrm{ sonst} \end{cases}[/mm]
>  
> Also,
>  zz: [mm]\forall x\in \IQ ([/mm] oder [mm]x \not\in \IQ) \forall \varepsilon > 0 \exists n_0 \in \IN, s.d. \forall n\ge n_0: |f_n(x)-f(x)|<\varepsilon[/mm]
>  
> Somit:
>  Sei [mm]\varepsilon > 0[/mm] gegeben
>  1. Fall: Sei [mm]x\in \IQ \Rightarrow |f_n(x)-f(x)|=|1-1|=0< \varepsilon.[/mm]
>  
> 2. Fall: Sei [mm]x\not\in \IQ \Rightarrow |f_n(x)-f(x)|=|0-0|=0[/mm]
> < [mm]\varepsilon.[/mm]
>  
> Drei Fragen:
> (i) Richtig so ???

beim ersten fall gilt die ungleichung doch nicht für alle $n$? im zweiten fall schon.


>  (ii) Muss ich noch zeigen, dass es nicht gleichmäßig
> konvergiert ???.

wenn nur gefordert wurde, dass du eine folge regelfunktionen die punktweise gegen $f$ angeben sollst, dann nicht.


>  (iii) Muss ich denn nicht noch zeigen, dass [mm]f_n[/mm] eine
> Regelfunktion ist ???

ja.

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]